Explicit Characterization of a Class of Parametric Solution Sets

نویسنده

  • Evgenija D. Popova
چکیده

Consider a linear system A(p) · x = b(p), where the elements of the matrix and the right-hand side vector depend affine-linearly on a m-tuple of parameters p = (p1, . . . , pm) varying within given intervals. It is a fundamental problem how to describe the parametric solution set Σ (A(p), b(p), [p]) := {x ∈ Rn | ∃p ∈ [p], A(p)x = b(p)}. So far, the solution set description can be obtained by a lengthy (and not unique) parameter elimination process. In this paper we introduce a new classification of the parameters with respect to the way they participate in the equations of the system and give numerical characterization for each class of parameters. For a class of parametric linear systems, where each uncertain parameter occurs in only one equation of the system and does not matter how many times within that equation, an explicit characterization of the parametric solution set is derived which generalizes the famous Oettly-Prager theorem for non-parametric linear systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Ae Solution Sets to a Class of Parametric Linear Systems

Abstract Consider linear systems whose input data are affine-linear functions of uncertain parameters varying within given intervals. We discuss the so-called AE solution sets of such systems, where the parameters are quantified and all universally quantified parameters precede all existentially quantified ones. Some explicit descriptions of the AE parametric solution sets are derived in the sp...

متن کامل

A NEW APPROACH TO THE SOLUTION OF SENSITIVITY MINIMIZATION IN LINEAR STATE FEEDBACK CONTROL

In this paper, it is shown that by exploiting the explicit parametric state feedback solution, it is feasible to obtain the ultimate solution to minimum sensitivity problem. A numerical algorithm for construction of a robust state feedback in eigenvalue assignment problem for a controllable linear system is presented. By using a generalized parametric vector companion form, the problem of eigen...

متن کامل

Explicit Description of AE Solution Sets for Parametric Linear Systems

Consider linear systems whose input data are linear functions of uncertain parameters varying within given intervals. We are interested in an explicit description of the so-called AE parametric solution sets (where all universally quantified parameters precede all existentially quantified ones) by a set of inequalities not involving the parameters. This work presents how to obtain explicit desc...

متن کامل

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009