Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia.
نویسندگان
چکیده
Mechanically sensitive hair cells of the auditory and vestibular systems use Ca2+ to control adaptation of mechanical transduction, to effect frequency tuning, to trigger neurotransmitter release, and to mediate efferent synaptic signaling. To determine the role that pumps play in regulation of Ca2+ in the hair bundle, the organelle responsible for mechanoelectrical transduction, we localized and quantified the plasma membrane Ca2+-ATPase (PMCA) of the bundle. We found that each hair bundle contains approximately 10(6) PMCA molecules or approximately 2000 per square micrometer of bundle membrane and that PMCA is the principal calmodulin binding protein of the bundle. Consistent with biochemical estimates of PMCA density, we measured with extracellular Ca2+-selective electrodes a substantial Ca2+ efflux from bundles. The number of bundle Ca2+ pumps and magnitude of resting Ca2+ efflux suggested that PMCA should generate a substantial membrane current as bundles expel Ca2+. Measurement of whole-cell currents revealed a transduction-dependent outward current that was consistent with the activity of PMCA. Finally, dialysis of hair cells with PMCA inhibitors led to a large increase in the concentration of Ca2+ in bundles, which suggests that PMCA plays a major role in regulating bundle Ca2+ concentration. Our data further indicate that PMCA could elevate the extracellular Ca2+ concentration close to hair bundles above the low level found in bulk endolymph.
منابع مشابه
Molecular determinants for differential membrane trafficking of PMCA1 and PMCA2 in mammalian hair cells.
The plasma membrane Ca2+-ATPase-2 (PMCA2) is expressed in stereocilia of hair cells of the inner ear, whereas PMCA1 is expressed in the basolateral plasma membrane of hair cells. Both extrude excess Ca2+ from the cytosol. They are predicted to contain ten membrane-spanning segments, two large cytoplasmic loops as well as cytosolic N- and C-termini. Several isoform variants are generated for bot...
متن کاملRapid turnover of stereocilia membrane proteins: evidence from the trafficking and mobility of plasma membrane Ca(2+)-ATPase 2.
We studied the spatial distribution, mobility, and trafficking of plasma membrane Ca2+ATPase-2 (PMCA2), a protein enriched in the hair cell apical membrane and essential for hair cell function. Using immunofluorescence, we determined that PMCA2 is enriched in the stereocilia and present at a relatively low concentration in the kinocilium and in the remaining apical membrane. Using an antibody t...
متن کاملA functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness.
Ca2+ enters the stereocilia of hair cells through mechanoelectrical transduction channels opened by the deflection of the hair bundle and is exported back to endolymph by an unusual splicing isoform (w/a) of plasma-membrane calcium-pump isoform 2 (PMCA2). Ablation or missense mutations of the pump cause deafness, as described for the G283S mutation in the deafwaddler (dfw) mouse. A deafness-ind...
متن کاملVestibular hair bundles control pH with (Na+, K+)/H+ exchangers NHE6 and NHE9.
In hair cells of the inner ear, robust Ca2+/H+ exchange mediated by plasma-membrane Ca2+-ATPase would rapidly acidify mechanically sensitive hair bundles without efficient removal of H+. We found that, whereas the basolateral membrane of vestibular hair cells from the frog saccule extrudes H+ via an Na+-dependent mechanism, bundles rapidly remove H+ in the absence of Na+ and HCO3(-), even when ...
متن کاملRegulation of free Ca2+ concentration in hair-cell stereocilia.
By affecting the activity of the adaptation motor, Ca2+ entering a hair bundle through mechanoelectrical transduction channels regulates the sensitivity of the bundle to stimulation. For adaptation to set the position of mechanosensitivity of the bundle accurately, the free Ca2+ concentration in stereocilia must be tightly controlled. To define the roles of Ca2+-regulatory mechanisms and thus t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 2 شماره
صفحات -
تاریخ انتشار 1998