Type Ii Migration of Planets on Eccentric Orbits

نویسندگان

  • Althea V. Moorhead
  • Eric B. Ford
چکیده

The observed extrasolar planets possess both large masses (with a median M sin i of 1.65 MJ) and a wide range in orbital eccentricity (0 < e < 0.94). As planets are thought to form in circumstellar disks, one important question in planet formation is determining whether, and to what degree, a gaseous disk affects an eccentric planet’s orbit. Recent studies have probed the interaction between a disk and a terrestrial planet on an eccentric orbit, and the interaction between a disk and a gas giant on a nearly circular orbit, but little is known about the interaction between a disk and an eccentric gas giant. Such a scenario could arise due to scattering while the disk is still present, or perhaps through planet formation via gravitational instability. We fill this gap with simulations of eccentric, massive (gap-forming) planets in disks using the hydrodynamical code FARGO. Although the long-term orbital evolution of the planet depends on disk properties, including the boundary conditions used, the disk always acts to damp eccentricity when the planet is released into the disk. This eccentricity damping takes place on a timescale of 40 years, 15 times faster than the migration timescale. Subject headings: planetary systems: formation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 1 Excitation of Orbital Eccentricities of Extrasolar Planets by Repeated Resonance Crossings

Orbits of known extrasolar planets that are located outside the tidal circular-ization regions of their parent stars are often substantially eccentric. By contrast, planetary orbits in our Solar System are approximately circular, reflecting planet formation within a nearly axisymmetric, circumsolar disk. We propose that the remarkable elongations of extrasolar planetary orbits are a consequence...

متن کامل

1 Excitation of Orbital Eccentricities of Extrasolar Planets by Repeated Resonance Crossings

Orbits of known extrasolar planets that are located outside the tidal circular-ization regions of their parent stars are often substantially eccentric. By contrast, planetary orbits in our Solar System are approximately circular, reflecting planet formation within a nearly axisymmetric, circumsolar disk. We propose that or-bital eccentricities may be generated by divergent orbital migration of ...

متن کامل

Planet Formation around Stars of Various Masses: Hot Super-earths

We consider trends resulting from two formation mechanisms for short-period super-Earths: planetplanet scattering and migration. We model scenarios where these planets originate near the snow line in “cold finger” circumstellar disks. Low-mass planet-planet scattering excites planets to low periastron orbits only for lower mass stars. With long circularisation times, these planets reside on lon...

متن کامل

Migration and Dynamical Relaxation in Crowded Systems of Giant Planets

This paper explores the intermediate-time dynamics of newly formed solar systems with a focus on possible mechanisms for planetary migration. We consider two limiting corners of the available parameter space – crowded systems containing N = 10 giant planets in the outer solar system, and solar systems with N = 2 planets that are tidally interacting with a circumstellar disk. Crowded planetary s...

متن کامل

Migration of extrasolar planets to large orbital radii

Observations of structure in circumstellar debris discs provide circumstantial evidence for the presence of massive planets at large (several tens of AU) orbital radii, where the timescale for planet formation via core accretion is prohibitively long. Here, we investigate whether a population of distant planets can be produced via outward migration subsequent to formation in the inner disc. Two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009