A molecular-thermodynamic model for the interactions between globular proteins in aqueous solutions: Applications to bovine serum albumin (BSA), lysozyme, α-chymotrypsin, and immuno-gamma-globulins (IgG) solutions

نویسندگان

  • Lin Jin
  • Yang-Xin Yu
  • Guang-Hua Gao
چکیده

To investigate globular protein–protein and protein–salt interactions in electrolyte solutions, a potential of mean force including hard-core repulsion, van der Waals attraction and electric double layer repulsion is proposed in this work. Both van der Waals attraction and double-layer repulsion are represented using hard spheres with two-Yukawa tails. The explicit analytical solution of osmotic pressure is derived from the first-order mean spherical approximation. From the comparison between the calculated and experimental values of osmotic pressures for aqueous bovine serum albumin (BSA), lysozyme, α-chymotrypsin, and immuno-gamma-globulins (IgG) solutions, we found that the proposed model is adequate for the description of the interactions between proteins at low ionic strength and small self-association of protein molecules. At high ionic strength, the charge inversions of protein molecules should be taken into account. © 2006 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic, Thermodynamic and Molecular Docking Studies on Interaction of Toxic Azo Dye with Bovine Serum Albumin

Investigation on interaction of azo dyes with bovine serum albumin as carrier protein will be important in the field of toxicology because of distribution and transportation of dyes in blood. In this regard, the interaction between the azo dye, trisodium (4E)-3-oxo-4-[(4- sulfonato-1- naphthyl) hydrazono] naphthalene-2,7-disulfonate (C20H11N2Na3O10S3), known as Amaranth and bovine serum albumin...

متن کامل

Coating of Iron Oxide Nanoparticles with Human and Bovine Serum Albumins: A Thermodynamic Approach

In this research, the Magnetite nanoparticles (Fe304) were prepared by coprecipitation of Fe3+ andFE solution in alkaline medium. Two kinds of surfactants, cetyl tri methyl ammonium bromide(CTAB) and cetyl pyridinum chloride (CPC) were used in the synthesis. Fe304 Nanoparticles werecoated with human serum albumin (HSA) and bovine serum albumin (BSA). Characteristics ofcoated magnetic nanopartic...

متن کامل

Thermodynamic Analysis for Cationic Surfactants Binding to Bovine Serum Albumin

In the present study, the binding isotherms for interaction of a homologous series of n-alkyltrimethyl ammonium bromides with bovine serum albumin (BSA) have been analyzed on basis of intrinsic thermodynamic quantities. In this regards, the intrinsic Gibbs free energy of binding, AGb(i,)„ has been estimated at various surfactant concentrations and its trend of variation for both binding sets ha...

متن کامل

Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition.

Phase transitions of protein aqueous solutions are important for protein crystallization and biomaterials science in general. One source of thermodynamic complexity in protein solutions and their phase transitions is the required presence of additives such as polyethylene glycol (PEG). To investigate the effects of PEG on the thermodynamic behavior of protein solutions, we report measurements o...

متن کامل

Thermodynamic Studies on the Interaction of Phthalocyanine with Bovine serum albumin

Using UV-Vis spectrophotometric method the interaction of water soluble phthalocyanine, Cobalt(ΙΙ) 4,4′,4′′,4′′′- tetrasulfophthalocyanine(CoTSPc), with bovine serum albumin (BSA) to determine the formation constant and related thermodynamic functions. The measurements were considered in 1mM sodium phosphate buffer, pH 7.0 and at 5 different temperatures 20, 25, 30, 35 and 40ºC. The results sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006