Spin states in graphene quantum dots.
نویسندگان
چکیده
We investigate ground and excited state transport through small (d≈70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the difference between ground-state energies as a function of a magnetic field. For a magnetic field in-plane of the quantum dot the Zeeman splitting of spin states is measured. The results are compatible with a g factor of 2, and we detect a spin-filling sequence for a series of states which is reasonable given the strength of exchange interaction effects expected by comparing Coulomb interaction energy and kinetic energy of charge carriers in graphene.
منابع مشابه
Spin coherence in carbon-based nanodevices
The scope of this thesis is the coherence of spins in carbon-based nanodevices. The motivation for this study are the promising spin-related properties of carbon-based materials, such as weak spin-orbit and hyperfine interaction, which are advantageous for achieving long spin coherence times. In addition, carbon based materials such as graphene and carbon nanotubes have a low mass density and h...
متن کاملSpin exchange interaction with tunable range between graphene quantum dots
We study the spin exchange between two electrons localized in separate quantum dots in graphene. The electronic states in the conduction band are coupled indirectly by tunneling to a common continuum of delocalized states in the valence band. As a model, we use a two-impurity Anderson Hamiltonian which we subsequently transform into an effective spin Hamiltonian by way of a two-stage Schrieffer...
متن کاملProbing relaxation times in graphene quantum dots
Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexpl...
متن کاملSpin qubits in graphene quantum dots
The electron spin is a very promising candidate for a solid-state qubit [1]. Major experimental breakthroughs have been achieved in recent years using quantum dots formed in semiconductor heterostructures based on GaAs technology [2, 3, 4, 5]. In such devices, the major sources of spin decoherence have been identified as the spin-orbit interaction, coupling the spin to lattice vibrations [6, 7,...
متن کاملHigh temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots
The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs). High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 105 11 شماره
صفحات -
تاریخ انتشار 2010