Lattice Rules for Multiple Integration and Discrepancy
نویسندگان
چکیده
Upper and lower bounds for the discrepancy of nodes in lattice rules for multidimensional numerical integration are established. In this way the applicability of lattice rules is extended to nonperiodic integrands.
منابع مشابه
Constructions of general polynomial lattice rules based on the weighted star discrepancy
In this paper we study construction algorithms for polynomial lattice rules over arbitrary polynomials. Polynomial lattice rules are a special class of digital nets which yield well distributed point sets in the unit cube for numerical integration. Niederreiter obtained an existence result for polynomial lattice rules over arbitrary polynomials for which the underlying point set has a small sta...
متن کاملVariance bounds and existence results for randomly shifted lattice rules
We study the convergence of the variance for randomly shifted lattice rules for numerical multiple integration over the unit hypercube in an arbitrary number of dimensions. We consider integrands that are square integrable but whose Fourier series are not necessarily absolutely convergent. For such integrands, a bound on the variance is expressed through a certain type of weighted discrepancy. ...
متن کاملConstructing Embedded Lattice Rules for Multivariate Integration
Lattice rules are a family of equal-weight cubature formulas for approximating highdimensional integrals. By now it is well established that good generating vectors for lattice rules having n points can be constructed component-by-component for integrands belonging to certain weighted function spaces, and that they can achieve the optimal rate of convergence. Although the lattice rules construc...
متن کاملComputing Discrepancies Related to Spaces of Smooth Periodic Functions
A notion of discrepancy is introduced, which represents the integration error on spaces of r-smooth periodic functions. It generalizes the diaphony and constitutes a periodic counterpart to the classical L2-discrepancy as well as r-smooth versions of it introduced recently by Paskov Pas93]. Based on previous work FH96], we develop an eecient algorithm for computing periodic discrepancies for qu...
متن کاملDigital lattice rules
High dimensional integrals appear in many applications, notably in financial mathematics and statistics. Those integrals are often not analytically tractable and hence one relies on numerical approximation methods. Theoretical investigations are frequently restricted to functions defined on the unit cube, as many functions defined on more general domains can be transformed to functions over the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010