Higher-Order Side Channel Security and Mask Refreshing

نویسندگان

  • Jean-Sébastien Coron
  • Emmanuel Prouff
  • Matthieu Rivain
  • Thomas Roche
چکیده

Masking is a widely used countermeasure to protect block cipher implementations against side-channel attacks. The principle is to split every sensitive intermediate variable occurring in the computation into d + 1 shares, where d is called the masking order and plays the role of a security parameter. A masked implementation is then said to achieve d-order security if any set of d (or less) intermediate variables does not reveal key-dependent information. At CHES 2010, Rivain and Prouff have proposed a higher-order masking scheme for AES that works for any arbitrary order d. This scheme, and its subsequent extensions, are based on an improved version of the shared multiplication processing published by Ishai et al. at CRYPTO 2003. This improvement enables better memory/timing performances but its security relies on the refreshing of the masks at some points in the algorithm. In this paper, we show that the method proposed at CHES 2010 to do such mask refreshing introduces a security flaw in the overall masking scheme. Specifically, we show that it is vulnerable to an attack of order dd/2e + 1 whereas the scheme is supposed to achieve d-order security. After exhibiting and analyzing the flaw, we propose a new solution which avoids the use of mask refreshing, and we prove its security. We also provide some implementation trick that makes our proposed solution, not only secure, but also faster than the original scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Security analysis of higher-order Boolean masking schemes for block ciphers (with conditions of perfect masking)

Side-channel attacks are an important class of cryptanalytic techniques against cryptographic implementations and masking is a frequently considered solution to improve the resistance of a cryptographic implementation against side-channel attacks. In this paper, we consequently analyze the security of higher-order Boolean masking schemes in various contexts. Our results are twofold. First, we f...

متن کامل

Formal Analysis of the Entropy / Security Trade-off in First-Order Masking Countermeasures against Side-Channel Attacks

Several types of countermeasures against side-channel attacks are known. The one called masking is of great interest since it can be applied to any protocol and/or algorithm, without nonetheless requiring special care at the implementation level. Masking countermeasures are usually studied with the maximal possible entropy for the masks. However, in practice, this requirement can be viewed as t...

متن کامل

Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model

In this paper, we provide a necessary clarification of the good security properties that can be obtained from parallel implementations of masking schemes. For this purpose, we first argue that (i) the probing model is not straightforward to interpret, since it more naturally captures the intuitions of serial implementations, and (ii) the noisy leakage model is not always convenient, e.g. when c...

متن کامل

Efficient Refreshing Protocol for Leakage-Resilient Storage Based on the Inner-Product Extractor

A recent trend in cryptography is to protect data and computation against various side-channel attacks. Dziembowski and Faust (TCC 2012) have proposed a general way to protect arbitrary circuits against any continual leakage assuming that: (i) the memory is divided into the parts, which leaks independently (ii) the leakage in each observation is bounded (iii) the circuit has an access to a leak...

متن کامل

Provably Secure Higher-Order Masking of AES

Implementations of cryptographic algorithms are vulnerable to Side Channel Analysis (SCA). To counteract it, masking schemes are usually involved which randomize key-dependent data by the addition of one or several random value(s) (the masks). When dth-order masking is involved (i.e. when d masks are used per key-dependent variable), the complexity of performing an SCA grows exponentially with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013