Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation
نویسندگان
چکیده
An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in Escherichia coli, suggesting that this mutation confers improved osmotic tolerance. To determine the role this mutation in rpoC plays in osmotic tolerance, we reconstructed the mutation in BW25113, and found it to confer improved tolerance to hyperosmotic stress. Metabolite analysis, exogenous supplementation assays, and cell membrane damage analysis suggest that the mechanism of improved osmotic tolerance by this rpoC mutation may be related to the higher production of acetic acid and amino acids such as proline, and increased membrane integrity in the presence of NaCl stress in exponential phase cells. Transcriptional analysis led to the findings that the overexpression of methionine related genes metK and mmuP improves osmotic tolerance in BW25113. Furthermore, deletion of a stress related gene bolA was found to confer enhanced osmotic tolerance in BW25113 and MG1655. These findings expand our current understanding of osmotic tolerance in E. coli, and have the potential to expand the utilization of high saline feedstocks and water sources in microbial fermentation.
منابع مشابه
Localization of Escherichia coli rpoC mutations that affect RNA polymerase assembly and activity at high temperature.
We localized five rpoC (beta') mutations affecting Escherichia coli RNA polymerase assembly. The Ts4, XH56, and R120 mutations changed beta' residues conserved throughout eubacteria; the JE10092 mutation occurred in the hypervariable region; rpoC1 (TsX) changed a universally conserved residue and corresponds to yeast rpb1-1. Thus, distinct, predominantly conserved beta' residues participate in ...
متن کاملSubminimal Inhibitory Concentrations of the Disinfectant Benzalkonium Chloride Select for a Tolerant Subpopulation of Escherichia coli with Inheritable Characteristics
Exposure of Escherichia coli to a subminimal inhibitory concentration (25% below MIC) of benzalkonium chloride (BC), an antimicrobial membrane-active agent commonly used in medical and food-processing environments, resulted in cell death and changes in cell morphology (filamentation). A small subpopulation (1-5% of the initial population) survived and regained similar morphology and growth rate...
متن کاملStudy of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants
Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...
متن کاملStudy of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants
Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...
متن کاملEscherichia coli RNA polymerase is the target of the cyclopeptide antibiotic microcin J25.
Escherichia coli microcin J25 (MccJ25) is a plasmid-encoded, cyclic peptide antibiotic consisting of 21 unmodified amino acid residues. It is primarily active on gram-negative bacteria related to the producer strain, inducing cell filamentation in an SOS-independent way. A mutation causing resistance to MccJ25 was isolated. Genetic analysis indicated that it resided in the rpoC gene, encoding t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2017