Protein modeling with reduced representation: statistical potentials and protein folding mechanism.
نویسندگان
چکیده
A high resolution reduced model of proteins is used in Monte Carlo dynamics studies of the folding mechanism of a small globular protein, the B1 immunoglobulin-binding domain of streptococcal protein G. It is shown that in order to reproduce the physics of the folding transition, the united atom based model requires a set of knowledge-based potentials mimicking the short-range conformational propensities and protein-like chain stiffness, a model of directional and cooperative hydrogen bonds, and properly designed knowledge-based potentials of the long-range interactions between the side groups. The folding of the model protein is cooperative and very fast. In a single trajectory, a number of folding/unfolding cycles were observed. Typically, the folding process is initiated by assembly of a native-like structure of the C-terminal hairpin. In the next stage the rest of the four-ribbon beta-sheet folds. The slowest step of this pathway is the assembly of the central helix on the scaffold of the beta-sheet.
منابع مشابه
Reduced C(beta) statistical potentials can outperform all-atom potentials in decoy identification.
We developed a series of statistical potentials to recognize the native protein from decoys, particularly when using only a reduced representation in which each side chain is treated as a single C(beta) atom. Beginning with a highly successful all-atom statistical potential, the Discrete Optimized Protein Energy function (DOPE), we considered the implications of including additional information...
متن کاملStructural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c
Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...
متن کاملCharacterization of protein-folding pathways by reduced-space modeling.
Ab initio simulations of the folding pathways are currently limited to very small proteins. For larger proteins, some approximations or simplifications in protein models need to be introduced. Protein folding and unfolding are among the basic processes in the cell and are very difficult to characterize in detail by experiment or simulation. Chymotrypsin inhibitor 2 (CI2) and barnase are probabl...
متن کاملDenatured proteins and early folding intermediates simulated in a reduced conformational space.
Conformations of globular proteins in the denatured state were studied using a high-resolution lattice model of proteins and Monte Carlo dynamics. The model assumes a united-atom and high-coordination lattice representation of the polypeptide conformational space. The force field of the model mimics the short-range protein-like conformational stiffness, hydrophobic interactions of the side chai...
متن کاملProtein modeling and structure prediction with a reduced representation.
Protein modeling could be done on various levels of structural details, from simplified lattice or continuous representations, through high resolution reduced models, employing the united atom representation, to all-atom models of the molecular mechanics. Here I describe a new high resolution reduced model, its force field and applications in the structural proteomics. The model uses a lattice ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica Polonica
دوره 52 4 شماره
صفحات -
تاریخ انتشار 2005