Level Set Segmentation of Biological Volume Datasets
نویسندگان
چکیده
This chapter describes level set techniques for extracting surface models from a broad variety of biological volume datasets. These techniques have been incorporated into a more general framework that includes other volume processing algorithms. The volume datasets are produced from standard 3D imaging devices, and are all noisy samplings of complex biological structures with boundaries that have low and often varying contrasts. The level set segmentation method, which is well documented in the literature, creates a new volume from the input data by solving an initial value partial differential equation (PDE) with user-defined feature-extracting terms. Given the local/global nature of these terms, proper initialization of the level set algorithm is extremely important. Thus, level set deformations alone are not sufficient, they must be combined with powerful pre-processing and data analysis techniques in order to produce successful segmentations. This chapter describes the pre-processing and data analysis techniques that have been developed for a number of segmentation applications, as well as the general structure of our framework. Several standard volume processing algorithms have been incorporated into the framework in order to segment datasets generated from MRI, CT and TEM scans. A technique based on moving least-squares has been developed for segmenting multiple non-uniform scans of a single object. New scalar measures have been defined for extracting structures from diffusion tensor MRI scans. Finally, a direct approach to the segmentation of incomplete tomographic data using density parameter estimation is described. These techniques, combined with level set surface deformations, allow us to segment many different types of biological volume datasets.
منابع مشابه
Segmentation of Biological Volume Datasets Using a Level-Set Framework
This paper presents a framework for extracting surface models from a broad variety of volume datasets. These datasets are produced from standard 3D imaging devices, and are all noisy samplings of complex biological structures with boundaries that have low and often varying contrasts. The level set segmentation method, which is well documented in the literature, creates a new volume from the inp...
متن کاملA Framework for Level Set Segmentation of Volume Datasets
This paper presents a framework for extracting surface models from a broad variety of volumetric datasets. These datasets are produced from standard 3D imaging devices, and are all noisy samplings of complex biological structures with boundaries that have low and often varying contrasts. The level set segmentation method, which is well documented in the literature, creates a new volume from the...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملSegmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کاملA Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images
Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004