A 3-D microelectrode system for dielectrophoretic manipulation of microparticles

نویسندگان

  • Dafeng Chen
  • Hejun Du
  • Haiqing Gong
  • Weihua Li
  • D. F. Chen
  • H. Du
  • W. H. Li
چکیده

This paper presents a microfluidic system for manipulation and separation of micron-sized particles based on the combined use of negative dielectrophoresis (DEP) and hydrodynamic forces. A 3-D microelectrode structure (so called paired electrode array) are constructed face to face on the top and bottom sides of the microchannel and driven with highfrequency AC voltage to generate dielectrophoretic gates. Depending on the relative strengths of the two forces, particles such as polystyrene beads or cells carrying by a laminar flow can either penetrate the gate or settle there. This gives rise to certain applications including selectively concentrating particles from the flow, separating particles depending on their sizes or dielectric properties, and automatically positioning particles to selective locations. For this purpose, a microfluidic device consisting of the paired electrode array sitting on the channel has been fabricated using microfabrication techniques. Polystyrene beads were used to study the performance of the device. Experimental results including the concentration and separation of particles are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of particles in microelectrode devices.

The impact of the convective fluid motion induced by the electric fields on the dielectrophoretic manipulation of particles is investigated theoretically and experimentally. By means of a simplified model a channel with a periodic array of microelectrodes we show that electroconvective flows induce the formation of traps for particles, providing a dynamical mechanism to control microparticles i...

متن کامل

Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficie...

متن کامل

The assembly of cell-encapsulated microparticles in a microfluidic system using optically induced dielectrophoretic (ODEP) force for structurally-controllable cartilage tissue engineering

Animal tissues normally have their inherently unique tissue architectures that are biologically meaningful for their tissue functions. Nevertheless, the conventional tissue engineering approaches cannot tailor the structures of an engineered tissue construct. To tackle the technical hurdle, the concept of “bottom-up” tissue engineering holds immense promise, by which an entire engineered tissue...

متن کامل

Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system.

This paper reports a lens-integrated liquid crystal display (LCD)-based optoelectronic tweezers (OET) system for interactive manipulation of polystyrene microspheres and blood cells by optically induced dielectrophoretic force. When a dynamic image pattern is projected into a specific area of a photoconductive layer in an OET, virtual electrodes are generated by spatially resolved illumination ...

متن کامل

Electroactive hydrodynamic weirs for microparticle manipulation and patterning.

We present a platform for parallelized manipulations of individual polarizable micron-scale particles (i.e., microparticles) that combines negative dielectrophoretic forcing with the passive capture of hydrodynamic weir-based trapping. Our work enables manipulations using ejection- andor exclusion-based methods. In ejection operations, we unload targeted weirs by displacing microparticles from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014