Hardware-Efficient Schemes of Quaternion Multiplying Units for 2D Discrete Quaternion Fourier Transform Processors

نویسندگان

  • Aleksandr Cariow
  • Galina Cariowa
  • Marina Chicheva
چکیده

In this paper, we offer and discuss three efficient structural solutions for the hardware-oriented implementation of discrete quaternion Fourier transform basic operations with reduced implementation complexities. The first solution a scheme for calculating sq product, the second solution – a scheme for calculating qt product, and the third solution – a scheme for calculating sqt product, where s is a so-called i -quaternion, t is an j quaternion, and q – is an usual quaternion. The direct multiplication of two usual quaternions requires 16 real multiplications (or two-operand multipliers in the case of fully parallel hardware implementation) and 12 real additions (or binary adders). At the same time, our solutions allow to design the computation units, which consume only 6 multipliers plus 6 two input adders for implementation of sq or qt basic operations and 9 binary multipliers plus 6 two-input adders and 4 four-input adders for implementation of sqt basic operation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 - D Hexagonal Quaternion Fourier Transform in Color Image Processing

In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the twodimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly con sidered. We analyze and present a new approach in processing the color images...

متن کامل

Tensor representation of color images and fast 2D quaternion discrete Fourier transform

In this paper, a general, efficient, split algorithm to compute the two-dimensional quaternion discrete Fourier transform (2-D QDFT), by using the special partitioning in the frequency domain, is introduced. The partition determines an effective transformation, or color image representation in the form of 1-D quaternion signals which allow for splitting the N ×M -point 2-D QDFT into a set of 1-...

متن کامل

Quaternion Fourier Transform for Colour Images

The Fourier transforms plays a critical role in broad range of image processing applications, including enhancement, restoration, analysis and compression. For filtering of gray scale images 2D Fourier transform is an important tool which converts the image from spatial domain to frequency domain and then by applying filtering mask filtering is done. To filter color images, a new approach is im...

متن کامل

Generalized Sampling Expansions Associated with Quaternion Fourier Transform

Quaternion-valued signals along with quaternion Fourier transforms (QFT) provide an effective framework for vector-valued signal and image processing. However, the sampling theory of quaternion valued signals has not been well developed. In this paper, we present the generalized sampling expansions associated with QFT by using the generalized translation and convolution. We show that a σ-bandli...

متن کامل

Modified Alpha-Rooting Color Image Enhancement Method On The Two-Side 2-D Quaternion Discrete Fourier Transform And The 2-D Discrete Fourier Transform

Color in an image is resolved to 3 or 4 color components and 2-Dimages of these components are stored in separate channels. Most of the color image enhancement algorithms are applied channel-by-channel on each image. But such a system of color image processing is not processing the original color. When a color image is represented as a quaternion image, processing is done in original colors. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.06320  شماره 

صفحات  -

تاریخ انتشار 2017