Lovász-Schrijver Reformulation

نویسنده

  • Madhur Tulsiani
چکیده

We discuss the hierarchies of linear and semidefinite programs defined by Lovász and Schrijver [33]. We describe recent progress on these hierarchies in the contexts of algorithm design, computational complexity and proof complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre Relaxations

Sherali and Adams (1990), Lovász and Schrijver (1991) and, recently, Lasserre (2001) have constructed hierarchies of successive linear or semidefinite relaxations of a 0− 1 polytope P ⊆ Rn converging to P in n steps. Lasserre’s approach uses results about representations of positive polynomials as sums of squares and the dual theory of moments. We present the three methods in a common elementar...

متن کامل

Tighter Linear and Semidefinite Relaxations for Max-cut Based on the Lovász–schrijver Lift-and-project Procedure∗

We study how the lift-and-project method introduced by Lovász and Schrijver [SIAM J. Optim., 1 (1991), pp. 166–190] applies to the cut polytope. We show that the cut polytope of a graph can be found in k iterations if there exist k edges whose contraction produces a graph with no K5-minor. Therefore, for a graph G with n ≥ 4 nodes with stability number α(G), n − 4 iterations suffice instead of ...

متن کامل

On the Lovász θ-number of almost regular graphs with application to Erdős–Rényi graphs

We consider k-regular graphs with loops, and study the Lovász θ-numbers and Schrijver θ′–numbers of the graphs that result when the loop edges are removed. We show that the θ-number dominates a recent eigenvalue upper bound on the stability number due to Godsil and Newman [C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets. Journal of Combinatorial Theory B, to appear]. As an a...

متن کامل

Tight bounds on the Lovász-Schrijver rank for approximate Capacitated Facility Location∗

In the Capacitated facility location (Cfl) problem we are given a set F of facilities and a set C of clients in a common metric space. Every facility has a hard capacity ui. Opening a facility i incurs a nonnegative cost fi, while assigning a client j to facility i incurs a nonnegative connection cost cij . The goal is to open a subset F ′ ⊆ F of the facilities and assign each client to an open...

متن کامل

Integrality gaps of 2 − o(1) for Vertex Cover SDPs in the Lovász-Schrijver hierarchy

Linear and semidefinite programming are highly successful approaches for obtaining good approximations for NP-hard optimization problems. For example, breakthrough approximation algorithms for MAX CUT and SPARSEST CUT use semidefinite programming. Perhaps the most prominent NP-hard problem whose exact approximation factor is still unresolved is VERTEX COVER. PCP-based techniques of Dinur and Sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010