A latent analogy framework for grapheme-to-phoneme conversion

نویسنده

  • Jerome R. Bellegarda
چکیده

Data-driven grapheme-to-phoneme conversion involves either (top-down) inductive learning or (bottom-up) pronunciation by analogy. As both approaches rely on local context information, they typically require some external linguistic knowledge, e.g., individual grapheme/phoneme correspondences. To avoid such supervision, this paper proposes an alternative solution, dubbed pronunciation by latent analogy, which adopts a more global definition of analogous events. For each out-of-vocabulary word, a neighborhood of globally relevant pronunciations is constructed through an appropriate data-driven mapping of its graphemic form. Phoneme transcription then proceeds via locally optimal sequence alignment and maximum likelihood position scoring. This method was successfully applied to the synthesis of proper names with a large diversity of origin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Language-independent Grapheme-phoneme Conversion and Word Stress Assignment as a Web Service

We introduce a new language-independent procedure for grapheme-phoneme conversion, syllabification, and word stress assignment. Grapheme-phoneme conversion and syllabification is carried out by means of fallback sequences of decision trees trained on varying context sizes. Word stress is determined within an analogy-based framework by means of a Bayes classifier. Evaluation results on six langu...

متن کامل

On Mispronunciation Lexicon Generation Using Joint-Sequence Multigrams in Computer-Aided Pronunciation Training (CAPT)

We investigate the use of joint-sequence multigrams to generate L2 mispronunciation lexicons for mispronunciation detection and diagnosis. In the joint-sequence framework, a pair of parallel strings (namely, the input string of either graphemes or phonemes of the canonical pronunciation and the phonetic string of the mispronunciation) are aligned to form joint units for probabilistic estimation...

متن کامل

A Novel Approach to Unsupervised Grapheme–to–phoneme Conversion

Automatic, data-driven grapheme-to-phoneme conversion is a challenging but often necessary task. The top-down strategy implicitly adopted by traditional inductive learning techniques tends to dismiss relevant contexts when they have been seen too infrequently in the training data. This paper proposes instead a bottom-up approach which, by design, exhibits better generalization properties. For e...

متن کامل

Rule-based Korean Grapheme to Phoneme Conversion Using Sound Patterns

Grapheme-to-phoneme conversion plays an important role in text-to-speech applications and other fields of computational linguistics. Although Korean uses a phonemic writing system, it must have a grapheme-to-phoneme conversion for speech synthesis because Korean writing system does not always reflect its actual pronunciations. This paper describes a grapheme-to-phoneme conversion method based o...

متن کامل

Joint-sequence models for grapheme-to-phoneme conversion

Grapheme-to-phoneme conversion is the task of finding the pronunciation of a word given its written form. It has important applications in text-to-speech and speech recognition. Joint-sequence models are a simple and theoretically stringent probabilistic framework that is applicable to this problem. This article provides a selfcontained and detailed description of this method. We present a nove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003