Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems
نویسندگان
چکیده
Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the "E. coli"- and "Burkholderia-type". CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae.
منابع مشابه
Correction: Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems
There is an error in Table 1. Lines 29 to 49 are incorrectly duplicated. Please see the corrected Table 1 here. Copyright: © 2016 Mercy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملIdentification of Functional Toxin/Immunity Genes Linked to Contact-Dependent Growth Inhibition (CDI) and Rearrangement Hotspot (Rhs) Systems
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). CDI(+) cells also express unique CdiI immunity proteins that specifically block the activity of cognate CdiA-CT, thereby protecting the cell from ...
متن کاملBacterial warfare again targets the ribosome.
In this issue of Structure, Beck and colleagues describe the structure of the Enterobacter cloacae contact-dependent growth inhibition (CDI) toxin in complex with its immunity protein. Further functional studies reveal that CDI targets translation by cleaving 16S ribosomal RNA.
متن کاملContact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli.
Contact-dependent growth inhibition (CDI) is a mechanism identified in Escherichia coli by which bacteria expressing two-partner secretion proteins encoded by cdiA and cdiB bind to BamA in the outer membranes of target cells and inhibit their growth. A third gene in the cluster, cdiI, encodes a small protein that is necessary and sufficient to confer immunity to CDI, thereby preventing cells ex...
متن کاملKind Discrimination and Competitive Exclusion Mediated by Contact-Dependent Growth Inhibition Systems Shape Biofilm Community Structure
Contact-Dependent Growth Inhibition (CDI) is a phenomenon in which bacteria use the toxic C-terminus of a large exoprotein (called BcpA in Burkholderia species) to inhibit the growth of neighboring bacteria upon cell-cell contact. CDI systems are present in a wide range of Gram-negative proteobacteria and a hallmark feature is polymorphism amongst the exoprotein C-termini (BcpA-CT in Burkholder...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016