Gecko adhesion: evolutionary nanotechnology.

نویسندگان

  • Kellar Autumn
  • Nick Gravish
چکیده

If geckos had not evolved, it is possible that humans would never have invented adhesive nanostructures. Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1ms-1. Climbing presents a significant challenge for an adhesive in requiring both strong attachment and easy rapid removal. Conventional pressure-sensitive adhesives (PSAs) are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). The gecko adhesive differs dramatically from conventional adhesives. Conventional PSAs are soft viscoelastic polymers that degrade, foul, self-adhere and attach accidentally to inappropriate surfaces. In contrast, gecko toes bear angled arrays of branched, hair-like setae formed from stiff, hydrophobic keratin that act as a bed of angled springs with similar effective elastic modulus to that of PSAs. Setae are self-cleaning and maintain function for months during repeated use in dirty conditions. Setae are an anisotropic 'frictional adhesive' in that adhesion requires maintenance of a proximally directed shear load, enabling either a tough bond or spontaneous detachment. Gecko-like synthetic adhesives may become the glue of the future-and perhaps the screw of the future as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of substrate modulus on gecko adhesion

The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system's performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko,...

متن کامل

Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces.

The role in adhesion of the toes and lamellae - intermediate-sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and...

متن کامل

Investigating gecko setae adhesion using a dual - axis MEMS force sensor

Submitted for the MAR07 Meeting of The American Physical Society Investigating gecko setae adhesion using a dual-axis MEMS force sensor1 GINEL HILL, DANIEL SOTO, Stanford University, ANNE PEATTIE, ROBERT FULL, University of California, Berkeley, THOMAS KENNY, Stanford University — A dual-axis piezoresistive MEMS force sensor was used to investigate the role of orientation angle on the adhesion ...

متن کامل

The adhesion model considering capillarity for gecko attachment system.

Geckos make use of approximately a million microscale hairs (setae) that branch off into hundreds of nanoscale spatulae to cling to different smooth and rough surfaces and detach at will. This hierarchical surface construction gives the gecko the adaptability to create a large real area of contact with surfaces. It is known that van der Waals force is the primary mechanism used to adhere to sur...

متن کامل

Human climbing with efficiently scaled gecko-inspired dry adhesives.

Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 366 1870  شماره 

صفحات  -

تاریخ انتشار 2008