MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice.
نویسندگان
چکیده
Mechanistic target of rapamycin (MTOR) plays a critical role in the regulation of cell growth and in the response to energy state changes. Drugs inhibiting MTOR are increasingly used in antineoplastic therapies. Myocardial MTOR activity changes during hypertrophy and heart failure (HF). However, whether MTOR exerts a positive or a negative effect on myocardial function remains to be fully elucidated. Here, we show that ablation of Mtor in the adult mouse myocardium results in a fatal, dilated cardiomyopathy that is characterized by apoptosis, autophagy, altered mitochondrial structure, and accumulation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). 4E-BP1 is an MTOR-containing multiprotein complex-1 (MTORC1) substrate that inhibits translation initiation. When subjected to pressure overload, Mtor-ablated mice demonstrated an impaired hypertrophic response and accelerated HF progression. When the gene encoding 4E-BP1 was ablated together with Mtor, marked improvements were observed in apoptosis, heart function, and survival. Our results demonstrate a role for the MTORC1 signaling network in the myocardial response to stress. In particular, they highlight the role of 4E-BP1 in regulating cardiomyocyte viability and in HF. Because the effects of reduced MTOR activity were mediated through increased 4E-BP1 inhibitory activity, blunting this mechanism may represent a novel therapeutic strategy for improving cardiac function in clinical HF.
منابع مشابه
Blocking eukaryotic initiation factor 4F complex formation does not inhibit the mTORC1-dependent activation of protein synthesis in cardiomyocytes.
Activation of the mammalian target of rapamycin complex 1 (mTORC1) causes the dissociation of eukaryotic initiation factor 4E complex (eIF4E)-binding protein 1 (4E-BP1) from eIF4E, leading to increased eIF4F complex formation. mTORC1 positively regulates protein synthesis and is implicated in several diseases including cardiac hypertrophy, a potentially fatal disorder involving increased cardio...
متن کاملBoth mTORC1 and mTORC2 are involved in the regulation of cell adhesion
mTOR is a central controller for cell growth/proliferation and survival. Recent studies have shown that mTOR also regulates cell adhesion, yet the underlying mechanism is not known. Here we found that inhibition of mTOR by rapamycin reduced the basal or type I insulin-like growth factor (IGF-1)-stimulated adhesion of cancer cells. Further research revealed that both mTORC1 and mTORC2 were invol...
متن کاملAKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis
The mTORC1 inhibitors, rapamycin and its analogs, are known to show only modest antitumor activity in clinic, but the underlying mechanisms remain largely elusive. Here, we found that activated AKT signaling is associated with rapamycin resistance in breast and colon cancers by sustained phosphorylation of the translational repressor 4E-BP1. Treatment of tumor cells with rapamycin or the AKT in...
متن کاملThe Effect of Endurance Exercise on mTORC1 Marker Pathway in the Soleus Muscles of Type 2 Diabetic Rats
Background mTORC1 marker pathway is one of the crucial pathways for the regulation of transcription level and an essential route involved in protein synthesis in skeletal muscles. Objective This study aimed to investigate the effect of endurance training on mTORC1 marker pathway in soleus muscle of type 2 diabetic rats. Methods In this experimental study, 16 Sprague-Dawley male rats (Mean±SD ...
متن کاملTranslation control during prolonged mTORC1 inhibition mediated by 4E-BP3
Targeting mTORC1 is a highly promising strategy in cancer therapy. Suppression of mTORC1 activity leads to rapid dephosphorylation of eIF4E-binding proteins (4E-BP1-3) and subsequent inhibition of mRNA translation. However, how the different 4E-BPs affect translation during prolonged use of mTOR inhibitors is not known. Here we show that the expression of 4E-BP3, but not that of 4E-BP1 or 4E-BP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 120 8 شماره
صفحات -
تاریخ انتشار 2010