Evader Interdiction and Collateral Damage

نویسندگان

  • Matthew P. Johnson
  • Alexander Gutfraind
چکیده

In network interdiction problems, evaders (e.g., hostile agents or data packets) may be moving through a network towards targets and we wish to choose locations for sensors in order to intercept the evaders before they reach their destinations. The evaders might follow deterministic routes or Markov chains, or they may be reactive, i.e., able to change their routes in order to avoid sensors placed to detect them. The challenge in such problems is to choose sensor locations economically, balancing security gains with costs, including the inconvenience sensors inflict upon innocent travelers. We study the objectives of 1) maximizing the number of evaders captured when limited by a budget on sensing cost and 2) capturing all evaders as cheaply as possible. We give optimal sensor placement algorithms for several classes of special graphs and hardness and approximation results for general graphs, including for deterministic or Markov chain-based and reactive or oblivious evaders. In a similar-sounding but fundamentally different problem setting posed by [7] where both evaders and innocent travelers are reactive, we again give optimal algorithms for special cases and hardness and approximation results on general graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interdiction of a Markovian Evader

Shortest path network interdiction is a combinatorial optimization problem on an activity network arising in a number of important security-related applications. It is classically formulated as a bilevel maximin problem representing an “interdictor” and an “evader”. The evader tries to move from a source node to the target node along a path of the least cost while the interdictor attempts to fr...

متن کامل

Parameterized Complexity of Edge Interdiction Problems

We study the parameterized complexity of graph interdiction problems. For an optimization problem on graphs, one can formulate an interdiction problem as a game consisting of two players, namely, an interdictor and an evader, who compete on an objective with opposing interests. In edge interdiction problems, every edge of the input graph has an interdiction cost associated with it and the inter...

متن کامل

Optimal Interdiction of Unreactive Markovian Evaders

The interdiction problem arises in a variety of areas including military logistics, infectious disease control, and counter-terrorism. In the typical formulation of network interdiction, the task of the interdictor is to find a set of edges in a weighted network such that the removal of those edges would maximally increase the cost to an evader of traveling on a path through the network. Our wo...

متن کامل

Sequential Shortest Path Interdiction with Incomplete Information

We study sequential interdiction when the interdictor has incomplete initial information about the network, and the evader has complete knowledge of the network, including its structure and arc costs. In each time period, the interdictor blocks at most k arcs from the network observed up to that period, after which the evader travels along a shortest path between two (fixed) nodes in the interd...

متن کامل

Network interdiction – models, applications, unexplored directions

Network interdiction is the monitoring or halting of an adversary’s activity on a network. Its models involve two players, usually called the interdictor and the evader (or, in the more general context of Stackelberg games, leader and follower). The evader operates on the network to optimize some objective such as moving through the network as fast as possible (shortest path interdiction), or w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011