On the concepts of intertwining operator and tensor product module in vertex operator algebra theory
نویسندگان
چکیده
We produce counterexamples to show that in the definition of the notion of intertwining operator for modules for a vertex operator algebra, the commutator formula cannot in general be used as a replacement axiom for the Jacobi identity. We further give a sufficient condition for the commutator formula to imply the Jacobi identity in this definition. Using these results we illuminate the crucial role of the condition called the “compatibility condition” in the construction of the tensor product module in vertex operator algebra theory, as carried out in work of Huang and Lepowsky. In particular, we prove by means of suitable counterexamples that the compatibility condition was indeed needed in this theory.
منابع مشابه
Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras
In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.
متن کاملA logarithmic generalization of tensor product theory for modules for a vertex operator algebra
We describe a logarithmic tensor product theory for certain module categories for a “conformal vertex algebra.” In this theory, which is a natural, although intricate, generalization of earlier work of Huang and Lepowsky, we do not require the module categories to be semisimple, and we accommodate modules with generalized weight spaces. The corresponding intertwining operators contain logarithm...
متن کاملar X iv : q - a lg / 9 50 50 19 v 1 1 7 M ay 1 99 5 A theory of tensor products for module categories for a vertex operator algebra , IV ∗
This is the fourth part of a series of papers developing a tensor product theory of modules for a vertex operator algebra. In this paper, We establish the associativity of P (z)-tensor products for nonzero complex numbers z constructed in Part III of the present series under suitable conditions. The associativity isomorphisms constructed in this paper are analogous to associativity isomorphisms...
متن کاملLogarithmic tensor product theory for generalized modules for a conformal vertex algebra
We generalize the tensor product theory for modules for a vertex operator algebra previously developed in a series of papers by the first two authors to suitable module categories for a “conformal vertex algebra” or even more generally, for a “Möbius vertex algebra.” We do not require the module categories to be semisimple, and we accommodate modules with generalized weight spaces. As in the ea...
متن کامل(nonmeromorphic) operator product expansion and the tensor product theory
In [HL1]–[HL5] and [H1], a theory of tensor products of modules for a vertex operator algebra is being developed. To use this theory, one first has to verify that the vertex operator algebra satisfies certain conditions. We show in the present paper that for any vertex operator algebra containing a vertex operator subalgebra isomorphic to a tensor product algebra of minimal Virasoro vertex oper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005