Cardiac Rapidly Activating Delayed Rectifier K' Channel

نویسندگان

  • Christopher C. Chadwick
  • Alan M. Ezrin
  • Bernard O'Connor
  • Walter A. Volberg
  • Karen J. Wedge
  • Douglas S. Krafte
چکیده

Class III antiarrhythmic drugs show promise as effective treatments for the suppression of potentially lethal cardiac arrhythmias. Dofetilide (UK-68,798), is a potent class III antiarrhythmic agent that is presently under clinical investigation. The objective of this study was to determine whether [3H]dofetilide could be used as a specific radioligand for the rapidly activating delayed rectifier K' channel of the heart. We find that [3H]dofetilide binds to high-affinity sites on guinea pig cardiac myocytes. Competition studies using unlabeled dofetilide indicate that binding is characterized by an IC50 of 100±30 nM (mean+SD, n=13). Scatchard analyses of binding indicate a Kd of 70±6 nM and a maximal binding capacity of 0.30±0.02 pmol/mg protein. [3H]Dofetilide is displaced from guinea pig myocytes by dofetilide, clofilium, quinidine, sotalol, and sematilide with a rank order of potency that correlates with functional blockade of the rapidly activating delayed rectifier K' current (correlation coefflicient, 0.951; slope, 0.99±0.19; p=0.014). High-affinity [3H]dofetilide binding is not detected in rat myocytes, which are devoid of delayed rectifier K' current. We conclude that [3H]dofetilide specifically binds to sites associated with the rapidly activating delayed rectifier K' channel of guinea pig myocardium. (Circulation Research 1993;72:707-714) KEY WoRDs * dofetilide * radioligands * delayed rectifier K' channels * antiarrhythmic agents

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K...

متن کامل

Novel, potent inhibitors of human Kv1.5 K+ channels and ultrarapidly activating delayed rectifier potassium current.

We have identified a series of diphenyl phosphine oxide (DPO) compounds that are potent frequency-dependent inhibitors of cloned human Kv1.5 (hKv1.5) channels. DPO inhibited hKv1.5 expressed in Chinese hamster ovary cells in a concentration-dependent manner preferentially during channel activation and slowed the deactivating tail current, consistent with a predominant open-channel blocking mech...

متن کامل

Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-alpha.

Mice that overexpress the inflammatory cytokine tumor necrosis factor-alpha in the heart (TNF mice) develop heart failure characterized by atrial and ventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias, and increased mortality (males > females). Abnormalities in Ca2+ handling, prolonged action potential duration (APD), calcium alternans, and reentrant atrial ...

متن کامل

Papaverine blocks hKv1.5 channel current and human atrial ultrarapid delayed rectifier K+ currents.

Papaverine, 1-[(3,4-dimethoxyphenyl)methyl]-6,-7-dimethoxyisoquinoline, has been used as a vasodilator agent and a therapeutic agent for cerebral vasospasm, renal colic, and penile impotence. We examined the effects of papaverine on a rapidly activating delayed rectifier K(+) channel (hKv1.5) cloned from human heart and stably expressed in Ltk(-) cells as well as a corresponding K(+) current (t...

متن کامل

Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel

Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005