TOPTMH: Topology Predictor for Transmembrane α-Helices
نویسندگان
چکیده
Alpha-helical transmembrane proteins mediate many key biological processes and represent 20–30% of all genes in many organisms. Due to the difficulties in experimentally determining their high-resolution 3D structure, computational methods that predict their topology (transmembrane helical segments and their orientation) are essential in advancing the understanding of membrane proteins’ structures and functions.
منابع مشابه
TOPTMH: Topology Predictor for Transmembrane alpha-Helices
Alpha-helical transmembrane proteins mediate many key biological processes and represent 20%-30% of all genes in many organisms. Due to the difficulties in experimentally determining their high-resolution 3D structure, computational methods to predict the location and orientation of transmembrane helix segments using sequence information are essential. We present TOPTMH, a new transmembrane hel...
متن کاملTopology Prediction of α-Helical Transmembrane Proteins –
Membrane proteins fulfil a number of tasks in cells, including signalling, cell-cell interaction, and the transportation of molecules. The prominence of these tasks makes membrane proteins an important target for clinical drugs. Because of the decreasing price of sequencing, the number of sequences known is increasing at such a rate that manual annotations cannot compete. Here, topology predict...
متن کاملA combined transmembrane topology and signal peptide prediction method.
An inherent problem in transmembrane protein topology prediction and signal peptide prediction is the high similarity between the hydrophobic regions of a transmembrane helix and that of a signal peptide, leading to cross-reaction between the two types of predictions. To improve predictions further, it is therefore important to make a predictor that aims to discriminate between the two classes....
متن کاملPredicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method.
Helices in membrane spanning regions are more tightly packed than the helices in soluble proteins. Thus, we introduce a method that uses a simple scale of burial propensity and a new algorithm to predict transmembrane helical (TMH) segments and a positive-inside rule to predict amino-terminal orientation. The method (the topology predictor of transmembrane helical proteins using mean burial pro...
متن کاملClassification of α-Helical Membrane Proteins Using Predicted Helix Architectures
Despite significant methodological advances in protein structure determination high-resolution structures of membrane proteins are still rare, leaving sequence-based predictions as the only option for exploring the structural variability of membrane proteins at large scale. Here, a new structural classification approach for α-helical membrane proteins is introduced based on the similarity of pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008