A Recursive Sparse Grid Collocation Method for Differential Equations with White Noise

نویسندگان

  • Zhongqiang Zhang
  • Michael V. Tretyakov
  • Boris Rozovskii
  • George E. Karniadakis
چکیده

We consider a sparse grid collocation method in conjunction with a time discretization of the differential equations for computing expectations of functionals of solutions to differential equations perturbed by time-dependent white noise. We first analyze the error of Smolyak’s sparse grid collocation used to evaluate expectations of functionals of solutions to stochastic differential equations discretized by the Euler scheme. We show theoretically and numerically that this algorithm can have satisfactory accuracy for small noise magnitude or small integration time, however it does not converge either with decrease of the Euler scheme’s time step size or with increase of Smolyak’s sparse grid level. Subsequently, we use this method as a building block for proposing a new algorithm by combining sparse grid collocation with a recursive procedure. This approach allows us to numerically integrate linear stochastic partial differential equations over longer times, which is illustrated in numerical tests on a stochastic advection-diffusion equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise

We compare Wiener chaos and stochastic collocation methods for linear advectionreaction-diffusion equations with multiplicative white noise. Both methods are constructed based on a recursive multistage algorithm for long-time integration. We derive error estimates for both methods and compare their numerical performance. Numerical results confirm that the recursive multistage stochastic colloca...

متن کامل

Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients

The sparse grid stochastic collocation method is a new method for solving partial differential equations with random coefficients. However, when the probability space has high dimensionality, the number of points required for accurate collocation solutions can be large, and it may be costly to construct the solution. We show that this process can be made more efficient by combining collocation ...

متن کامل

A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data

This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method for the approximation of statistical quantities related to the solution of partial differential equations with random coefficients and forcing terms (input data of the model). To compute solution statistics, the sparse grid stochastic collocation method uses approximate solutions, produced here by finite el...

متن کامل

An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations

In recent years, there has been a growing interest in analyzing and quantifying the effects of random inputs in the solution of ordinary/partial differential equations. To this end, the spectral stochastic finite element method (SSFEM) is the most popular method due to its fast convergence rate. Recently, the stochastic sparse grid collocation method has emerged as an attractive alternative to ...

متن کامل

Fast Algorithms for the Solution of Stochastic Partial Differential Equations

Title of dissertation: FAST ALGORITHMS FOR THE SOLUTION OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS Christopher W. Miller, Doctor of Philosophy, 2012 Dissertation directed by: Professor Howard Elman Department of Computer Science Institute for Advanced Computer Studies We explore the performance of several algorithms for the solution of stochastic partial differential equations including the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014