Parameters estimation for continuous-time heavy-tailed signals modeled by α-stable autoregressive processes

نویسندگان

  • Zeinab Hashemifard
  • Hamidreza Amindavar
  • Arash Amini
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-line Bayesian Estimation of Signals in Symmetric α-Stable Noise

In this paper we describe on-line Bayesian filtering methods for time series models with heavy-tailed α-stable noise. The filtering methodology is based on a scale mixtures of normals (SMiN) representation of the α-stable distribution, which reexpresses the intractable stable distribution in a conditionally Gaussian form. We describe how the method can be used for estimation of TVAR signals bur...

متن کامل

On-line Bayesian Estimation of AR Signals in Symmetric α-Stable Noise

In this paper we propose an on-line Bayesian filtering and smoothing method for time series models with heavy-tailed α-stable noise, with a particular focus on TVAR models. α-stable processes have been shown in the past to be a good model for many naturally occurring noise sources, see e.g. [1, 2]. We first point out how a filter that fails to take into account the heavy-tailed character of the...

متن کامل

Robust Estimation of Transition Matrices in High Dimensional Heavy-tailed Vector Autoregressive Processes

Gaussian vector autoregressive (VAR) processes have been extensively studied in the literature. However, Gaussian assumptions are stringent for heavy-tailed time series that frequently arises in finance and economics. In this paper, we develop a unified framework for modeling and estimating heavy-tailed VAR processes. In particular, we generalize the Gaussian VAR model by an elliptical VAR mode...

متن کامل

Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations

When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter es...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Digital Signal Processing

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2016