The Role of Sentence Structure in Recognizing Textual Entailment

نویسنده

  • Catherine Blake
چکیده

Recent research suggests that sentence structure can improve the accuracy of recognizing textual entailments and paraphrasing. Although background knowledge such as gazetteers, WordNet and custom built knowledge bases are also likely to improve performance, our goal in this paper is to characterize the syntactic features alone that aid in accurate entailment prediction. We describe candidate features, the role of machine learning, and two final decision rules. These rules resulted in an accuracy of 60.50 and 65.87% and average precision of 58.97 and 60.96% in RTE3Test and suggest that sentence structure alone can improve entailment accuracy by 9.25 to 14.62% over the baseline majority class.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanded Dependency Structure based Textual Entailment Recognition System of NTTDATA for NTCIR10-RITE2

This paper describes NTT DATA’s recognizing textual entailment(RTE) systems for NTCIR10 RITE2. We participate in four Japanese tasks, BC Subtask, Unit Test, Exam BC and Exam Search[5]. Our approach uses a ratio with the same semantic relations between words. It is necessary to recognize two semantic viewpoints, which are the semantic relation and the meaning between words in a sentence, in orde...

متن کامل

IKOMA at TAC2011: A Method for Recognizing Textual Entailment using Lexical-level and Sentence Structure-level features

This paper describes the Recognizing Textual Entailment (RTE) system that our teams developed for TAC 2011. Our system combines the entailment score calculated by lexicallevel matching with the machine-learningbased filtering mechanism using various features obtained from lexical-level, chunk-level and predicate argument structure-level information. In the filtering mechanism, we try to discard...

متن کامل

Text Entailment in Semantic Web World

Text Entailment is the concept of determining whether the message conveyed by one sentence is exactly captured by another sentence or not. There have been various approaches discovered to determine the entailment between a pair of sentences. We present a system using RDF (Resource Description Framework) approach that uses online free data available for recognizing textual entailment. There are ...

متن کامل

The Meaning Factory: Formal Semantics for Recognizing Textual Entailment and Determining Semantic Similarity

Shared Task 1 of SemEval-2014 comprised two subtasks on the same dataset of sentence pairs: recognizing textual entailment and determining textual similarity. We used an existing system based on formal semantics and logical inference to participate in the first subtask, reaching an accuracy of 82%, ranking in the top 5 of more than twenty participating systems. For determining semantic similari...

متن کامل

Chinese Textual Entailment Recognition Based on Syntactic Tree Clipping

Textual entailment has been proposed as a unifying generic framework for modeling language variability and semantic inference in different Natural Language Processing (NLP) tasks. This paper presents a novel statistical method for recognizing Chinese textual entailment in which lexical, syntactic with semantic matching features are combined together. In order to solve the problems of syntactic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007