Thin film assembly of spider silk-like block copolymers.

نویسندگان

  • Sreevidhya T Krishnaji
  • Wenwen Huang
  • Olena Rabotyagova
  • Eugenia Kharlampieva
  • Ikjun Choi
  • Vladimir V Tsukruk
  • Rajesh Naik
  • Peggy Cebe
  • David L Kaplan
چکیده

We report the self-assembly of monolayers of spider silk-like block copolymers. Langmuir isotherms were obtained for a series of bioengineered variants of the spider silks, and stable monolayers were generated. Langmuir-Blodgett films were prepared by transferring the monolayers onto silica substrates and were subsequently analyzed by atomic force microscopy (AFM). Static contact angle measurements were performed to characterize interactions across the interface (thin film, water, air), and molecular modeling was used to predict 3D conformation of spider silk-like block copolymers. The influence of molecular architecture and volume fraction of the proteins on the self-assembly process was assessed. At high surface pressure, spider silk-like block copolymers with minimal hydrophobic block (f(A) = 12%) formed oblate structures, whereas block copolymer with a 6-fold larger hydrophobic domain (f(A) = 46%) formed prolate structures. The varied morphologies obtained with increased hydrophobicity offer new options for biomaterials for coatings and related options. The design and use of bioengineered protein block copolymers assembled at air-water interfaces provides a promising approach to compare 2D microstructures and molecular architectures of these amphiphiles, leading to more rationale designs for a range of nanoengineered biomaterial needs as well as providing a basis of comparison to more traditional synthetic block copolymer systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of sequence features on assembly of spider silk block copolymers.

Bioengineered spider silk block copolymers were studied to understand the effect of protein chain length and sequence chemistry on the formation of secondary structure and materials assembly. Using a combination of in vitro protein design and assembly studies, we demonstrate that silk block copolymers possessing multiple repetitive units self-assemble into lamellar microstructures. Additionally...

متن کامل

Final Report: Role of Chain Microstructure and Branching on Solution and Thin Film Phase Behavior

Final Report: Role of Chain Microstructure and Branching on Solution and Thin Film Phase Behavior Report Title This study has focused on elucidating links between topological design of block copolymers and chain stiffness, their assembly in solution and organization in thin films. Novel aspects include the ability to tune chain rigidity without altering chemical composition and precision contro...

متن کامل

Interfacial stabilization of bilayered nanolaminates by asymmetric block copolymers

Block copolymers are macromolecular surfactants that self-assemble into a variety of nanostructural elements or reduce the interfacial tension between incompatible polymers. Here, we examine the ability of diblock copolymers differing in composition to stabilize bilayered homopolymer nanolaminates on flat solid supports. In this arrangement, self-assembly competes with interfacial modification ...

متن کامل

The thin ribbon silk of the brown recluse spider: structure, mechanical behavior, and biomimicry

Silk has enormous potential as a next-generation material: it is a biopolymer spun from protein at ambient temperature and pressure, and the best spider silks are as strong as steel and tougher than Kevlar. Because of its green production, mechanical robustness, and biocompatibility, silk has been studied for use in a range of engineering and biomedical applications. However, despite exciting r...

متن کامل

Supramolecular Assemblies from Poly(styrene)-block-poly(4-vinylpyridine) Diblock Copolymers Mixed with 6-Hydroxy-2-naphthoic Acid

Supramolecular assemblies involving interaction of a small organic molecule, 2-hydroxy-6-Naphthoic acid (HNA), with poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers are utilized to obtain micellar structures in solution, nanostructured thin films on flat substrates and, finally, nanoporous thin films. The formation of hydrogen bonds between HNA and the poly(4-vinylpyridi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2011