Domain-specific classification methods for disfluency detection
نویسندگان
چکیده
Speech disfluencies are very common in our everyday life and considerably affect NLP systems, which makes systems that can detect or even repair them highly desirable. Previous research achieved good results in the field of disfluency detection but only in subsets of the disfluency types. The aim of this study was to develop a technology that is able to cope with a broad field of disfluency types. A thorough investigation of our corpus led us to a detection design where basic rule-matching techniques are complemented with machine learning and N-gram based approaches. In this paper, we describe the different detection techniques, each specialized on its own disfluency domain and the results we gained.
منابع مشابه
Newborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملComparing Different Machine Learning Approaches for Disfluency Structure Detection in a Corpus of University Lectures∗
This paper presents a number of experiments focusing on assessing the performance of different machine learning methods on the identification of disfluencies and their distinct structural regions over speech data. Several machine learning methods have been applied, namely Naive Bayes, Logistic Regression, Classification and Regression Trees (CARTs), J48 and Multilayer Perceptron. Our experiment...
متن کاملCross-Domain Speech Disfluency Detection
We build a model for speech disfluency detection based on conditional random fields (CRFs) using the Switchboard corpus. This model is then applied to a new domain without any adaptation. We show that a technique for detecting speech disfluencies based on Integer Linear Programming (ILP) (Georgila, 2009) significantly outperforms CRFs. In particular, in terms of F-score and NIST Error Rate the ...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملFluency and belief bias in deductive reasoning: new indices for old effects
Models based on signal detection theory (SDT) have occupied a prominent role in domains such as perception, categorization, and memory. Recent work by Dube et al. (2010) suggests that the framework may also offer important insights in the domain of deductive reasoning. Belief bias in reasoning has traditionally been examined using indices based on raw endorsement rates-indices that critics have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008