ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions.
نویسندگان
چکیده
Thrombotic thrombocytopenic purpura (TTP) is a devastating thrombotic disorder caused by widespread microvascular thrombi composed of platelets and von Willebrand factor (VWF). The disorder is associated with a deficiency of the VWF-cleaving metalloprotease, ADAMTS-13, with consequent accumulation of ultralarge (UL) VWF multimers in the plasma. ULVWF multimers, unlike plasma forms of VWF, attach spontaneously to platelet GP Ibalpha, a component of the GP Ib-IX-V complex. We have found that ULVWF multimers secreted from stimulated endothelial cells (ECs) remained anchored to the endothelial surface where platelets and Chinese hamster ovary cells expressing the GP Ib-IX-V complex attached to form long beads-on-a-string structures in the presence of fluid shear stresses in both the venous (2.5 dyne/cm(2)) and arterial (20 and 50 dyne/cm(2)) ranges. Although measurement of the activity of the ADAMTS-13 VWF-cleaving metalloprotease in vitro requires prolonged incubation of the enzyme with VWF under nonphysiologic conditions, EC-derived ULVWF strings with attached platelets were cleaved within seconds to minutes in the presence of normal plasma (containing approximately 100% ADAMTS-13 activity) or in the presence of partially purified ADAMTS-13. By contrast, the strings persisted for the entire period of perfusion (10 minutes) in the presence of plasma from patients with TTP containing 0% to 10% ADAMTS-13 activity. These results suggest that cleavage of EC-derived ULVWF multimers by ADAMTS-13 is a rapid physiologic process that occurs on endothelial cell surfaces.
منابع مشابه
Cleavage of ultralarge multimers of von Willebrand factor by C-terminal-truncated mutants of ADAMTS-13 under flow.
A disintegrin-like and metalloprotease with thrombospondin type 1-motif 13 (ADAMTS-13) cleaves the A2 domain of von Willebrand factor (VWF), converting the ultralarge (UL) and hyperactive VWF multimers freshly released from endothelial cells to smaller and less active forms found in plasma. Recombinant ADAMTS-13 lacking the C-terminal region is active under static conditions, but its functions ...
متن کاملHuman complement factor H is a reductase for large soluble von Willebrand factor multimers--brief report.
OBJECTIVE Ultralarge von Willebrand factor (vWF) strings are secreted by, and anchored to, stimulated human endothelial cells. A disintegrin and metalloprotease with thrombospondin domains-type 13 cleaves the ultralarge vWF strings into large soluble vWF multimers. Normal plasma contains a nonproteolytic reducing activity that subsequently rapidly diminishes the size of the large soluble vWF mu...
متن کاملBypassing the requirement for MYC in lymphoma progression
tribute to pathologic thrombosis. It is generally accepted that the prothrombotic functions of VWF are directly related to multimer size. This and previous studies demonstrate that shear forces generated by flowing blood can cause the noncovalent but relatively stable assembly of very large VWF polymers from plasma multimers and, thus, enhance platelet adhesion and activation. The cleavage by A...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Effects of inflammatory cytokines on the release and cleavage of the endothelial cell–derived ultralarge von Willebrand factor multimers under flow
ADAMTS13 cleaves ultralarge and hyperreactive von Willebrand factor (ULVWF) freshly released from activated endothelial cells to smaller and less active forms. This process may be affected by the amount of ULVWF released and the processing capacity of ADAMTS13, contributing to the development of thrombotic diseases. We examined the effects of inflammatory cytokines on the release and cleavage o...
متن کاملP-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface.
von Willebrand factor (VWF) released from endothelium is ultralarge (UL) and hyperreactive. If released directly into plasma, it can spontaneously aggregate platelets, resulting in systemic thrombosis. This disastrous consequence is prevented by the ADAMTS13 (ADisintegrin and Metalloprotease with ThromboSpondin motif) cleavage of ULVWF into smaller, less active forms. We previously showed that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 100 12 شماره
صفحات -
تاریخ انتشار 2002