Iron uptake promotes hyperoxic injury to alveolar macrophages.
نویسندگان
چکیده
Iron uptake by cells may increase the intracellular pool of prooxidant iron prior to storage of iron within ferritin. Because hyperoxia is toxic to alveolar macrophages (AM) via mechanisms involving oxidant stress, we hypothesized that iron uptake by AM might promote hyperoxia-induced injury. To assess this hypothesis, we cultured AM recovered from healthy volunteers under conditions of normoxia or hyperoxia (60% or 95% oxygen) in media of varying iron content, including control media (3 microM iron) and media supplemented with iron (FeCl3; total iron 10, 20, or 40 microM). AM injury was assessed by measuring release of lactate dehydrogenase (LDH), phagocytic activity for yeast, and cytosolic concentrations of calcium ([Ca2+]i) as determined by ratio image analysis of AM loaded with the fluorescent calcium probe indo-1. There was dose-dependent accumulation of iron and ferritin synthesis in AM exposed to iron-supplemented media. Exposure of AM to hyperoxia (60% and 95% oxygen, 18 h) in control media increased LDH release and impaired phagocytic activity for yeast; however, similar hyperoxic exposures in iron-supplemented media significantly increased the cells' LDH release and decreased phagocytosis. Exposure to 95% oxygen increased the [Ca2+]i of AM over 18 h, but similar exposure in iron-supplemented media induced greater increases in [Ca2+]i. As compared with exposure to normoxia, exposure to hyperoxia (60% and 95% oxygen) also decreased iron uptake and, to a greater extent, ferritin synthesis by AM in iron-supplemented media. These data suggest that: (1) iron uptake promotes hyperoxic injury to AM; and (2) hyperoxia impairs the capacity of AM to sequester iron in ferritin.
منابع مشابه
Protective effect of procysteine on Acinetobacter pneumonia in hyperoxic conditions.
OBJECTIVES Ventilator-associated pneumonia (VAP) is an important cause of morbidity and mortality in critical care settings. Acinetobacter has become a leading cause of VAP. In particular, the appearance and spread of multidrug-resistant Acinetobacter is of great concern. In this study, we examined the effect of the antioxidant procysteine on Acinetobacter murine pneumonia in hyperoxic conditio...
متن کاملPI3K-AKT Signaling via Nrf2 Protects against Hyperoxia-Induced Acute Lung Injury, but Promotes Inflammation Post-Injury Independent of Nrf2 in Mice
Lung epithelial and endothelial cell death accompanied by inflammation contributes to hyperoxia-induced acute lung injury (ALI). Impaired resolution of ALI can promote and/or perpetuate lung pathogenesis, including fibrosis. Previously, we have shown that the transcription factor Nrf2 induces cytoprotective gene expression and confers protection against hyperoxic lung injury, and that Nrf2-medi...
متن کاملExpression of matrix metalloproteinases in pigs with hyperoxia-induced acute lung injury.
The aim of this study was to determine the role of matrix metalloproteinases (MMPs) in the pathogenesis of acute lung injury induced by hyperoxia. Twenty-three pigs were exposed in sealed cages to >80% oxygen (for 24-120 h) or room air. Correlation between MMP-2/MMP-9 activity, measured by gelatin zymography in bronchoalveolar lavage fluid (BALF), and the histological findings and pathological ...
متن کاملThe inflammasome mediates hyperoxia-induced alveolar cell permeability.
A hallmark of hyperoxic acute lung injury is the influx of inflammatory cells to lung tissue and the production of proinflammatory cytokines, such as IL-1beta; however, the mechanisms connecting hyperoxia and the inflammatory response to lung damage is not clear. The inflammasome protein complex activates caspase-1 to promote the processing and secretion of proinflammatory cytokines. We hypothe...
متن کاملPulmonary response to hyperoxia: effects of magnesium.
Animals and humans rapidly develop respiratory failure and die within a few days when exposed to 100% oxygen. Postmortem examination of the lungs shows histopathologic features characteristic of diffuse alveolar damage, clinically recognized as adult respiratory distress syndrome (ARDS). At the present time, there is no effective therapy available to alter outcomes in ARDS. Importantly, hypomag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 159 1 شماره
صفحات -
تاریخ انتشار 1999