Interactive image segmentation by matching attributed relational graphs

نویسندگان

  • Alexandre Noma
  • Ana Beatriz Vicentim Graciano
  • Roberto Marcondes Cesar Junior
  • Luís Augusto Consularo
  • Isabelle Bloch
چکیده

A model-based graph matching approach is proposed for interactive image segmentation. It starts from an over-segmentation of the input image, exploiting color and spatial information among regions to propagate the labels from the regions marked by the user-provided seeds to the entire image. The region merging procedure is performed by matching two graphs: the input graph, representing the entire image; and the model graph, representing only the marked regions. The optimization is based on discrete search using deformed graphs to efficiently evaluate the spatial information. Note that by using a model-based approach, different interactive segmentation problems can be tackled: binary and multilabel segmentation of single images as well as of multiple similar images. Successful results for all these cases are presented, in addition to a comparison between our binary segmentation results and those obtained with state-of-the-art approaches. An implementation is available at http://structuralsegm. sourceforge.net/. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Approximate Matching of Attributed Relational Graphs

Image segmentation algorithms identify meaningful spatial entities for content-based image retrieval. One or several visual features are extracted for each entity. Based on the feature vectors of the spatial entities and their mutual relationships, attributed relational graphs (ARG) can effectively model entire images. The image retrieval process in an ARG context requires efficient methods to ...

متن کامل

A New Algorithm for Interactive Structural Image Segmentation

This paper proposes a novel algorithm for the problem of structural image segmentation through an interactive model-based approach. Interaction is expressed in the model creation, which is done according to user traces drawn over a given input image. Both model and input are then represented by means of attributed relational graphs derived on the fly. Appearance features are taken into account ...

متن کامل

Inexact graph matching for model-based recognition: Evaluation and comparison of optimization algorithms

A method for segmentation and recognition of image structures based on graph homomorphisms is presented in this paper. It is a model-based recognition method where the input image is over-segmented and the obtained regions are represented by an attributed relational graph (ARG). This graph is then matched against a model graph thus accomplishing the model-based recognition task. This type of pr...

متن کامل

Fast Matching of Hierarchical Attributed Relational Graphs for an Application to Similarity-Based Image Retrieval

This paper describes the fast matching of hierarchical attributed relational graphs with the aim of applying the method to similarity-based image retrieval. Best-first search algorithm, admissible heuristic function, and maximum permissible cost are proposed to speed up the computation of graph matching. By means of these methods, the average computation time of graph matching speeds up about t...

متن کامل

Evaluation of Spatial Similarity Methods for Image Retrieval

Similarity retrieval by spatial content (i.e., using multiple objects and their interelationships) in Image DataBases (IDBs) is still an open problem and has received considerable attention in the literature. In this work, we focus our attention on “queries by example” image and we study methods for answering such queries including the well accepted “editing distance” on Attributed Relational G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2012