LEGClust - A Clustering Algorithm Based on Layered Entropic Subgraphs
نویسندگان
چکیده
Hierarchical clustering is a stepwise clustering method usually based on proximity measures between objects or sets of objects from a given data set. The most common proximity measures are distance measures. The derived proximity matrices can be used to build graphs, which provide the basic structure for some clustering methods. We present here a new proximity matrix based on an entropic measure and also a clustering algorithm (LEGClust) that builds layers of subgraphs based on this matrix, and uses them and a hierarchical agglomerative clustering technique to form the clusters. Our approach capitalizes on both a graph structure and a hierarchical construction. Moreover, by using entropy as a proximity measure we are able, with no assumption about the cluster shapes, to capture the local structure of the data, forcing the clustering method to reflect this structure. We present several experiments on artificial and real data sets that provide evidence on the superior performance of this new algorithm when compared with competing ones.
منابع مشابه
Data Classification with Neural Networks and Entropic Criteria
The concept of entropy and related measures has been applied in learning systems since the 1980s. Several researchers have applied entropic concepts to independent component analysis and blind source separation. Several previous works that use entropy and mutual information in neural networks are basically related to prediction and regression problems. In this thesis we use entropy in two diffe...
متن کاملA Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Population
Assigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters’ objects is the main task of clustering analysis. SSPCO optimization algorithm is anew optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem ...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملAn Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملAn improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on pattern analysis and machine intelligence
دوره 30 1 شماره
صفحات -
تاریخ انتشار 2008