The location of protein S8 and surrounding elements of 16S rRNA in the 70S ribosome from combined use of directed hydroxyl radical probing and X-ray crystallography.
نویسندگان
چکیده
Ribosomal protein S8, which is essential for the assembly of the central domain of 16S rRNA, is one of the most thoroughly studied RNA-binding proteins. To map its surrounding RNA in the ribosome, we carried out directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to nine different positions on the surface of protein S8 in 70S ribosomes. Hydroxyl radical-induced cleavage was observed near the classical S8-binding site in the 620 stem, and flanking the other S8-footprinted regions of the central domain at the three-helix junction near position 650 and the 825 and 860 stems. In addition, cleavage near the 5' terminus of 16S rRNA, in the 300 region of its 5' domain, and in the 1070 region of its 3'-major domain provide information about the proximity to S8 of RNA elements not directly involved in its binding. These data, along with previous footprinting and crosslinking results, allowed positioning of protein S8 and its surrounding RNA elements in a 7.8-A map of the Thermus thermophilus 70S ribosome. The resulting model is in close agreement with the extensive body of data from previous studies using protein-protein and protein-RNA crosslinking, chemical and enzymatic footprinting, and genetics.
منابع مشابه
Directed hydroxyl radical probing of 16S rRNA in the ribosome: Spatial proximity of RNA elements of the 39 and 59 domains
We have shown previously that directed hydroxyl radical probing of 16S rRNA from Fe(II) tethered to specific sites within the RNA gives valuable information about RNA–RNA proximities in 70S ribosomes. Here, we extend that study and present probing data from nt 424 in 16S rRNA. To tether an Fe(II) to position 424 in the rRNA we created a specific discontinuity in the RNA by in vitro transcriptio...
متن کاملDirected hydroxyl radical probing of 16S rRNA in the ribosome: spatial proximity of RNA elements of the 3' and 5' domains.
We have shown previously that directed hydroxyl radical probing of 16S rRNA from Fe(II) tethered to specific sites within the RNA gives valuable information about RNA-RNA proximities in 70S ribosomes. Here, we extend that study and present probing data from nt 424 in 16S rRNA. To tether an Fe(II) to position 424 in the rRNA we created a specific discontinuity in the RNA by in vitro transcriptio...
متن کاملDirected hydroxyl radical probing of 16S ribosomal RNA in ribosomes containing Fe(II) tethered to ribosomal protein S20.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small sub...
متن کاملMassive parallel-sequencing-based hydroxyl radical probing of RNA accessibility
Hydroxyl Radical Footprinting (HRF) is a tried-and-tested method for analysis of the tertiary structure of RNA and for identification of protein footprints on RNA. The hydroxyl radical reaction breaks accessible parts of the RNA backbone, thereby allowing ribose accessibility to be determined by detection of reverse transcriptase termination sites. Current methods for HRF rely on reverse transc...
متن کاملThe Novel Aminomethylcycline Omadacycline Has High Specificity for the Primary Tetracycline-Binding Site on the Bacterial Ribosome
Omadacycline is an aminomethylcycline antibiotic with potent activity against many Gram-positive and Gram-negative pathogens, including strains carrying the major efflux and ribosome protection resistance determinants. This makes it a promising candidate for therapy of severe infectious diseases. Omadacycline inhibits bacterial protein biosynthesis and competes with tetracycline for binding to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2000