Concentration dependent effects of urea binding to poly(N-isopropylacrylamide) brushes: a combined experimental and numerical study.
نویسندگان
چکیده
The binding effects of osmolytes on the conformational behavior of grafted polymers are studied in this work. In particular, we focus on the interactions between urea and poly(N-isopropylacrylamide) (PNIPAM) brushes by monitoring the ellipsometric brush thickness for varying urea concentrations over a broad temperature range. The interpretation of the obtained data is supported by atomistic molecular dynamics simulations, which provide detailed insights into the experimentally observed concentration-dependent effects on PNIPAM-urea interaction. In particular, in the low concentration regime (cu ≤ 0.5 mol L(-1)) a preferential exclusion of urea from PNIPAM chains is observed, while in the high concentration regime (2 ≤ cu ≤ 7 mol L(-1)) a preferential binding of the osmolyte to the polymer surface is found. In both regimes, the volume phase transition temperature (Ttr) decreases with increasing urea concentration. This phenomenon derives from two different effects depending on urea concentration: (i) for cu ≤ 0.5 mol L(-1), the decrease of Ttr is explained by a decrease of the chemical potential of bulk water in the surrounding aqueous phase; (ii) for cu ≥ 2 mol L(-1), the lower Ttr is explained by the favorable replacement of water molecules by urea, which can be regarded as a cross-linker between adjacent PNIPAM chains. Significant effects of the concentration-dependent urea binding on the brush conformation are noticed: at cu = 0.5 mol L(-1), although urea is loosely embedded between the hydrated polymer chains, it enhances the brush swelling by excluded volume effects. Beyond 0.5 mol L(-1), the stronger interaction between PNIPAM and urea reduces the chain hydration, which in combination with cross-linking of monomer units induces the shrinkage of the polymer brush.
منابع مشابه
Thermoresponsive Micropatterned Substrates for Single Cell Studies
We describe the design of micropatterned surfaces for single cell studies, based on thermoresponsive polymer brushes. We show that brushes made of poly(N-isopropylacrylamide) grafted at high surface density display excellent protein and cell anti-adhesive properties. Such brushes are readily patterned at the micron scale via deep UV photolithography. A proper choice of the adhesive pattern shap...
متن کاملDual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications
The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...
متن کاملSpecific ion modulated thermoresponse of poly(N-isopropylacrylamide) brushes.
The influence of specific anions on the equilibrium thermoresponse of poly(N-isopropylacrylamide) (pNIPAM) brushes has been studied using in situ ellipsometry, quartz crystal microbalance with dissipation (QCM-D) and static contact angle measurements between 20 and 45 °C in the presence of up to 250 mM acetate and thiocyanate anions in water. The thickness and changes in dissipation exhibited a...
متن کاملCollapse and swelling of thermally sensitive poly(N-isopropylacrylamide) brushes monitored with a quartz crystal microbalance.
Thermally sensitive poly(N-isopropylacrylamide) (PNIPAM) brushes grafted on SiO2-coated quartz crystal surface were prepared with a surface-immobilized initiator. Using quartz crystal microbalance (QCM), we investigated the collapse and swelling of the brushes in water in real time. Both frequency and dissipation of PNIPAM brushes were found to gradually change throughout a temperature range 20...
متن کاملPatterned poly(N-isopropylacrylamide) brushes on silica surfaces by microcontact printing followed by surface-initiated polymerization.
Patterned poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated on oxidized silicon wafers by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide from a micropatterned initiator. The patterned surface initiator was prepared by microcontact-printing octadecyltrichlorosilane and backfilling with 3-(aminopropyl)triethoxysilane followed by amidization with 2-brom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 7 شماره
صفحات -
تاریخ انتشار 2016