The Classification of Separable Simple C*-algebras Which Are Inductive Limits of Continuous-trace C*-algebras with Spectrum Homeomorphic to the Closed Interval [0,1]

نویسندگان

  • GEORGE A. ELLIOTT
  • CRISTIAN IVANESCU
چکیده

A classification is given of certain separable nuclear C*algebras not necessarily of real rank zero, namely, the class of separable simple C*-algebras which are inductive limits of continuoustrace C*-algebras whose building blocks have spectrum homeomorphic to the closed interval [0, 1], or to a disjoint union of copies of this space. Also, the range of the invariant is calculated. 1991 Mathematics Subject Classification. 46L35, 46L06.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Classification of Simple Approximately Subhomogeneous C*-algebras Not Necessarily of Real Rank Zero

A classification is given of certain separable nuclear C*-algebras not necessarily of real rank zero, namely the class of simple C*-algebras which are inductive limits of continuous-trace C*-algebras whose building blocks have their spectrum homeomorphic to the interval [0, 1] or to a finite disjoint union of closed intervals. In particular, a classification of those stably AI algebras which ar...

متن کامل

DERIVATIONS OF TENSOR PRODUCT OF SIMPLE C*-ALGEBRAS

In this paper we study the properties of derivations of A B, where A and B are simple separable C*-algebras, and A B is the C*-completion of A B with respect to a C*-norm Yon A B and we will characterize the derivations of A B in terms of the derivations of A and B

متن کامل

On a functional equation for symmetric linear operators on $C^{*}$ algebras

‎Let $A$ be a $C^{*}$ algebra‎, ‎$T‎: ‎Arightarrow A$ be a linear map which satisfies the functional equation $T(x)T(y)=T^{2}(xy),;;T(x^{*})=T(x)^{*} $‎. ‎We prove that under each of the following conditions‎, ‎$T$ must be the trivial map $T(x)=lambda x$ for some $lambda in mathbb{R}$: ‎‎ ‎i) $A$ is a simple $C^{*}$-algebra‎. ‎ii) $A$ is unital with trivial center and has a faithful trace such ...

متن کامل

Asymptotically Unitary Equivalence and Classification of Simple Amenable C∗-algebras

Let C and A be two unital separable amenable simple C-algebras with tracial rank no more than one. Suppose that C satisfies the Universal Coefficient Theorem and suppose that φ1, φ2 : C → A are two unital monomorphisms. We show that there is a continuous path of unitaries {ut : t ∈ [0,∞)} of A such that lim t→∞ u∗tφ1(c)ut = φ2(c) for all c ∈ C if and only if [φ1] = [φ2] in KK(C,A), φ ‡ 1 = φ 2 ...

متن کامل

The Range of a Class of Classifiable Separable Simple Amenable C-algebras

We study the range of a classifiable class A of unital separable simple amenable C∗algebras which satisfy the Universal Coefficient Theorem. The class A contains all unital simple AH-algebras. We show that all unital simple inductive limits of dimension drop circle C∗-algebras are also in the class. This unifies some of the previous known classification results for unital simple amenable C∗-alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008