Synaptic inhibition of pyramidal cells evoked by different interneuronal subtypes in layer v of rat visual cortex.
نویسندگان
چکیده
Properties of GABA(A) receptor-mediated unitary inhibitory postsynaptic currents (uIPSCs) in pyramidal (P) cells, evoked by fast spiking (FS) and low-threshold spike (LTS) subtypes of interneurons in layer V of rat visual cortex slices were examined using dual whole cell recordings. uIPSCs evoked by FS cells were larger and faster rising than those evoked by LTS cells, consistent with the known primary projections of FS and LTS cell axons to perisomatic and distal dendritic areas of layer V pyramidal cells, respectively, and the resulting electrotonic attenuation for LTS-P synaptic events. Unexpectedly, the decay time constants for LTS-P and FS-P uIPSCs were not significantly different. Modeling results were consistent with differences in the underlying GABA(A) receptor-mediated conductance at LTS-P and FS-P synapses. Paired-pulse depression (PPD), present at both synapses, was associated with an increase in failure rate and a decrease in coefficient of variation, indicating that presynaptic mechanisms were involved. Furthermore, the second and first uIPSC amplitudes during PPD were not inversely correlated, suggesting that PPD at both synapses is independent of previous release and might not result from depletion of the releasable pool of synaptic vesicles. Short, 20-Hz trains of action potentials in presynaptic interneurons evoked trains of uIPSCs with exponentially decreasing amplitudes at both FS-P and LTS-P synapses. FS-P uIPSC amplitudes declined more slowly than those of LTS-P uIPSCs. Thus FS and LTS cells, with their differences in firing properties, synaptic connectivity with layer V P cells, and short-term synaptic dynamics, might play distinct roles in regulating the input-output relationship of the P cells.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملEffects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملPrimed-burst potentiation in adult rat visual cortex in vitro
The effectiveness of θ pattern primed-bursts (PBs) on development of primed-burst (PB) potentiation was investigated in layer II/III of the adult rat visual cortex in vitro. Experiments were carried out in the visual cortical slices. Population excitatory post-synaptic potentials (pEPSPs) were evoked in layer II/III by stimulation of either white mater or layer IV. To induce long-term potenti...
متن کاملSpatial patterns of excitation and inhibition evoked by lateral connectivity in layer 2/3 of rat barrel cortex.
In the rat barrel cortex, neurons in layer 4 are topographically arranged in a precise columnar structure, and the excitatory feed-forward input from layer 4 to layer 2/3 projects almost exclusively within the home barrel column. Here we analyzed the lateral connectivity that links neighboring columns in layer 2/3, which is necessary for integrating information across whiskers. We examined the ...
متن کاملMajor differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses.
Locally projecting GABAergic interneurons are the major providers of inhibition in the neocortex and play a crucial role in several brain functions. Neocortical interneurons are connected via electrical and chemical synapses that may be crucial in modulating complex network oscillations. We investigated the properties of spontaneous and evoked IPSCs in two morphologically and physiologically id...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 88 2 شماره
صفحات -
تاریخ انتشار 2002