VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.
نویسندگان
چکیده
Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.
منابع مشابه
Dendritic Spine Plasticity in Development and Aging
The postsynaptic density (PSD) of spinous excitatory synapses is characterized by an electron‐ dense filamentous meshwork of cytoskeletal proteins that serve three major functions: (1) the organization of glutamate receptors, (2) the clustering of synaptic adhesion molecules, and (3) the coupling of synaptic membrane proteins to intracellular signaling cascades. Consequently, in recent years a ...
متن کاملSVIP Induces Localization of p97/VCP to the Plasma and Lysosomal Membranes and Regulates Autophagy
The small p97/VCP-interacting protein (SVIP) functions as an inhibitor of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Here we show that overexpression of SVIP in HeLa cells leads to localization of p97/VCP at the plasma membrane, intracellular foci and juxtanuclear vacuoles. The p97/VCP-positive vacuolar structures colocalized or associated with LC3 and lamp1, suggesti...
متن کاملSigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway.
Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER)-resident proteins known to be involved in learning and memory. Dendritic spines in hippocampal neurons play important roles in neuroplasticity and learning and memory. This study tested the hypothesis that Sig-1Rs might regulate denritic spine formation in hippocampal neurons and examined potential mechanisms therein. In rat hippocampal...
متن کاملInclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation.
Mutations in the AAA+ protein (ATPase associated with a variety of cellular activities) p97/VCP (valosin-containing protein) cause a dominantly inherited syndrome of inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia (IBMPFD). p97/VCP is a ubiquitously expressed protein that participates in a number of cellular processes including endoplasmic reticulum-associa...
متن کاملAAA ATPase p97/VCP: cellular functions, disease and therapeutic potential
p97/VCP, a member of the AAA-ATPase super family, has been associated with a wide variety of essential cellular protein pathways com prising: (i) nuclear envelope reconstruction, (ii) cell cycle, (iii) Golgi reassembly, (iv) suppression of apoptosis and (v) DNA-damage response [1-6]. In addition, vasolin-containing protein (VCP) dislodges the ubiquitinated proteins from the endoplasmic reticulu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 7 شماره
صفحات -
تاریخ انتشار 2016