On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions

نویسندگان

  • Alexey F. Izmailov
  • Mikhail V. Solodov
چکیده

Assuming that the primal part of the sequence generated by a Newton-type (e.g., SQP) method applied to an equality-constrained problem converges to a solution where the constraints are degenerate, we investigate whether the dual part of the sequence is attracted by those Lagrange multipliers which satisfy second-order sufficient condition (SOSC) for optimality, or by those multipliers which violate it. This question is relevant at least for two reasons: one is speed of convergence of standard methods; the other is applicability of some recently proposed approaches for handling degenerate constraints. We show that for the class of damped Newton methods, convergence of the dual sequence to multipliers satisfying SOSC is unlikely to occur. We support our findings by numerical experiments. We also suggest a simple auxiliary procedure for computing multiplier estimates, which does not have this undesirable property. Finally, some consequences for the case of mixed equality and inequality constraints are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints

We discuss possible scenarios of behaviour of the dual part of sequences generated by primal-dual Newton-type methods when applied to optimization problems with nonunique multipliers associated to a solution. Those scenarios are: (a) failure of convergence of the dual sequence; (b) convergence to a so-called critical multiplier (which, in particular, violates some second-order sufficient condit...

متن کامل

Sufficient Optimality Conditions and Semi-Smooth Newton Methods for Optimal Control of Stationary Variational Inequalities

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimalit...

متن کامل

Attraction of Newton method to critical Lagrange multipliers: fully quadratic case

All previously known results concerned with attraction of Newton-type iterations for optimality systems to critical Lagrange multipliers were a posteriori by nature: they were showing that in case of convergence, the dual limit is in a sense unlikely to be noncritical. This paper suggests the first a priori result in this direction, showing that critical multipliers actually serve as attractors...

متن کامل

Sucient Optimality Conditions and Semi-Smooth Newton Methods for Optimal Control of Stationary Variational Inequalities

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimalit...

متن کامل

On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers

It has been previously demonstrated that in the case when a Lagrange multiplier associated to a given solution is not unique, Newton iterations [e.g., those of sequential quadratic programming (SQP)] have a tendency to converge to special multipliers, called critical multipliers (when such critical multipliers exist). This fact is of importance because critical multipliers violate the second-or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2009