Mechanisms of cell survival in hypoxia and hypothermia.
نویسنده
چکیده
Most animals experience some degree of hypoxia and hypothermia during the course of their natural life history either as a consequence of ambient 'exposure' per se or through metabolic, respiratory and/or circulatory insufficiency. A prevailing experimental approach has been to probe tissues from natural models of hypoxia-tolerant and cold-tolerant vertebrates to look for common mechanisms of defence against O(2) lack and hypothermia. The ability to sustain vital cellular functions in severe cases of either condition varies widely amongst the vertebrates. Like humans, the vast majority of mammals are unable to survive prolonged periods of hypothermia or O(2) deprivation owing to irreversible membrane damage and loss of cellular ion homeostasis in vital organs such as the brain and heart. However, numerous hibernating endotherms, neonatal and diving mammals as well as many ectotherms can tolerate prolonged periods that would, in clinical terms, be called asphyxia or deep hypothermia. The key to their survival under such conditions lies in an inherent ability to downregulate their cellular metabolic rate to new hypometabolic steady states in a way that balances the ATP demand and ATP supply pathways.
منابع مشابه
O24: Functional Role of the K2P Potassium Channel TASK-3 in Glioma
TASK-3, a two-pore-domain (K2P) potassium channel, has been implicated as important regulator for the effector function and proliferation of T-cells. Interestingly, TASK-3 has also a functional impact on tumor cells. Therefore, we sought to investigate whether TASK3 modulation might have a therapeutic potential for malignant gliomas by a variety of phenotypical and functional in vitro assays mi...
متن کاملHypoxia Preconditioning Promotes Survival And Clonogenic Capacity Of Human Umbilical Cord Blood Mesenchymal Stem Cells
Background: In recent decade, human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) provide enormous potential for appropriate cell therapy, but they have limited growth potential and cease to proliferate due to cellular senescence, so providing a strategy for increasing the stem cell survival is necessary. Methods: In this investigation, MSCs characterized by flow cytome...
متن کاملNeuroprotection via RNA-binding protein RBM3 expression is regulated by hypothermia but not by hypoxia in human SK-N-SH neurons
OBJECTIVE Therapeutic hypothermia is an established treatment for perinatal asphyxia. Yet, many term infants continue to die or suffer from neurodevelopmental disability. Several experimental studies have demonstrated a beneficial effect of mild-to-moderate hypothermia after hypoxic injury, but the understanding of hypothermia-induced neuroprotection remains incomplete. In general, global prote...
متن کاملHypothermia inhibits the proliferation of bone marrow-derived mesenchymal stem cells and increases tolerance to hypoxia by enhancing SUMOylation
Hypothermia therapy has a positive effect on patients with severe brain injury. Recent studies have shown that mild hypothermia increases the survival of bone marrow-derived mesenchymal stem cells (BMSCs) in a hypoxic environment; however, the underlying mechanisms are not yet fully understood. Small ubiquitin-like modifiers (SUMOs) are sensitive to temperature stress reactions and are consider...
متن کاملMechanisms of hypothermic neuroprotection.
Prolonged, moderate cerebral hypothermia initiated within a few hours after severe hypoxia-ischemia and continued until resolution of the acute phase of delayed cell death can reduce acute brain injury and improve long-term behavioral recovery in term infants and in adults after cardiac arrest. The specific mechanisms of hypothermic neuroprotection remain unclear, in part because hypothermia su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 204 Pt 18 شماره
صفحات -
تاریخ انتشار 2001