Unmixed Local Rings with Minimal Hilbert-kunz Multiplicity Are Regular

نویسندگان

  • CRAIG HUNEKE
  • YONGWEI YAO
چکیده

We give a new and simple proof that unmixed local rings having Hilbert-Kunz multiplicity equal to 1 must be regular.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Rings with Small Hilbert{kunz Multiplicity

A result of Watanabe and Yoshida says that an unmixed local ring of positive characteristic is regular if and only if its Hilbert-Kunz multiplicity is one. We show that, for fixed p and d, there exist a number ǫ(d, p) > 0 such that any nonregular unmixed ring R its Hilbert-Kunz multiplicity is at least 1+ ǫ(d, p). We also show that local rings with sufficiently small Hilbert-Kunz multiplicity a...

متن کامل

2 Minimal Hilbert - Kunz Multiplicity

In this paper, we ask the following question: what is the minimal value of the difference e HK (I) − e HK (I ′) for ideals I ′ ⊇ I with l A (I ′ /I) = 1? In order to answer to this question, we define the notion of minimal Hilbert-Kunz multiplicity for strongly F-regular rings. Moreover, we calculate this invariant for quotient singularities and for the coordinate ring of the Segre embedding: P...

متن کامل

Characterizations of Regular Local Rings in Positive Characteristics

In this note, we provide several characterizations of regular local rings in positive characteristics, in terms of the Hilbert-Kunz multiplicity and its higher Tor counterparts ti = lim n→∞ l(Tori(k, f n R))/p . We also apply the characterizations to improve a recent result by Bridgeland and Iyengar in the characteristic p case. Our proof avoids using the existence of big CohenMacaulay modules,...

متن کامل

Semistability and Hilbert-kunz Multiplicities for Curves

Similarly, for a non local ring R (of prime characteristic p), and an ideal I ⊆ R for which l(R/I) is finite, the Hilbert-Kunz function and multiplicity makes sense. Henceforth for such a pair (R, I), we denote the Hilbert-Kunz multiplicity of R with respect to I by HKM(R, I), or by HKM(R) if I happens to be an obvious maximal ideal. Given a pair (X,L), where X is a projective variety over an a...

متن کامل

A Hilbert-kunz Criterion for Solid Closure in Dimension Two (characteristic Zero)

Let I denote a homogeneous R+-primary ideal in a twodimensional normal standard-graded domain over an algebraically closed field of characteristic zero. We show that a homogeneous element f belongs to the solid closure I∗ if and only if eHK(I) = eHK((I, f)), where eHK denotes the (characteristic zero) Hilbert-Kunz multiplicity of an ideal. This provides a version in characteristic zero of the w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008