Electrical pulse fabrication of graphene nanopores in electrolyte solution.

نویسندگان

  • Aaron T Kuan
  • Bo Lu
  • Ping Xie
  • Tamas Szalay
  • Jene A Golovchenko
چکیده

Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors

High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...

متن کامل

Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes.

We report the development of a multilayered graphene-Al(2)O(3) nanopore platform for the sensitive detection of DNA and DNA-protein complexes. Graphene-Al(2)O(3) nanolaminate membranes are formed by sequentially depositing layers of graphene and Al(2)O(3), with nanopores being formed in these membranes using an electron-beam sculpting process. The resulting nanopores are highly robust, exhibit ...

متن کامل

Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores

In order to achieve optimal desalination during capacitive deionization (CDI), CDI electrodes should possess high electrical conductivity, large surface area, good wettability to water, narrow pore size distribution and efficient pathways for ion and electron transportation. In this work, we fabricated a novel CDI electrode based on a three-dimensional graphene (3DG) architecture by constructin...

متن کامل

Effect of ultrasonic waves on morphology and electrical treatment of graphene

It is important to examine the factors that determine the properties of graphene. Various factors affect the properties of graphene nanosheets that can revolutionize the use of graphene. One such factor is ultrasonic waves, which have significant effects on graphene properties. In this research, we studied the effect of ultrasonic waves with different power levels (35, 50, 360, and 420 W) on fo...

متن کامل

Geometric Effects on Nanopore Creation in Graphene and on the Impact-withstanding Efficiency of Graphene Nanosheets

Abstract Single- and multilayer graphene sheets (MLGSs) are projectile-resisting materials that can be bombarded by nanoparticles to produce graphene sheets of various sizes and distributions of nanopores. These sheets are used in a variety of applications, including DNA sequencing, water desalination, and phase separation. Here, the impact-withstanding efficiency of graphene nanosheets and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied physics letters

دوره 106 20  شماره 

صفحات  -

تاریخ انتشار 2015