Allosteric beta1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain.

نویسندگان

  • Bing-Hao Luo
  • Konstantin Strokovich
  • Thomas Walz
  • Timothy A Springer
  • Junichi Takagi
چکیده

The ligand binding function of integrins can be modulated by various monoclonal antibodies by both direct and indirect mechanisms. We have characterized an anti-beta(1) antibody, SG/19, that had been reported to inhibit the function of the beta(1) integrin on the cell surface. SG/19 recognized the wild type beta(1) subunit that exists in a conformational equilibrium between the high and low affinity states but bound poorly to a mutant beta(1) integrin that had been locked in a high affinity state. Epitope mapping of SG/19 revealed that Thr(82) in the beta(1) subunit, located at the outer face of the boundary between the I-like and hybrid domains, was the key binding determinant for this antibody. Direct visualization of the alpha (5)beta(1) headpiece fragment in complex with SG/19 Fab with electron microscopy confirmed the location of the binding surface and showed that the ligand binding site is not occluded by the bound Fab. Surface plasmon resonance showed that alpha (5)beta(1) integrin bound by SG/19 maintained a low affinity toward its physiological ligand fibronectin (Fn) whereas binding by function-blocking anti-alpha(5) antibodies resulted in a complete loss of fibronectin binding. Thus a class of the anti-beta antibodies represented by SG/19 attenuate the ligand binding function by restricting the conformational shift to the high affinity state involving the swing-out of the hybrid domain without directly interfering with ligand docking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allosteric 1 Integrin Antibodies That Stabilize the Low Affinity State by Preventing the Swing-out of the Hybrid Domain*

The ligand binding function of integrins can be modulated by various monoclonal antibodies by both direct and indirect mechanisms. We have characterized an anti1 antibody, SG/19, that had been reported to inhibit the function of the 1 integrin on the cell surface. SG/19 recognized the wild type 1 subunit that exists in a conformational equilibrium between the high and low affinity states but bo...

متن کامل

Relating conformation to function in integrin α5β1.

Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, ...

متن کامل

Integrin inside-out signaling and the immunological synapse.

Integrins dynamically equilibrate between three conformational states on cell surfaces. A bent conformation has a closed headpiece. Two extended conformations contain either a closed or an open headpiece. Headpiece opening involves hybrid domain swing-out and a 70 Å separation at the integrin knees, which is conveyed by allostery from the hybrid-proximal end of the βI domain to a 3 Å rearrangem...

متن کامل

Structure and Dynamics of the Integrin LFA-1 I-Domain in the Inactive State Underlie its Inside-Out/Outside-In Signaling and Allosteric Mechanisms

Lymphocyte function-associated antigen 1 (LFA-1) is an integrin that transmits information in two directions across the plasma membrane of leukocytes, in so-called outside-in and inside-out signaling mechanisms. To investigate the structural basis of these mechanisms, we studied the conformational space of the apo I-domain using replica-averaged metadynamics simulations in combination with nucl...

متن کامل

Rationally designed integrin beta3 mutants stabilized in the high affinity conformation.

Integrins are important cell surface receptors that transmit bidirectional signals across the membrane. It has been shown that a conformational change of the integrin beta-subunit headpiece (i.e. the beta I domain and the hybrid domain) plays a critical role in regulating integrin ligand binding affinity and function. Previous studies have used coarse methods (a glycan wedge, mutations in trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 26  شماره 

صفحات  -

تاریخ انتشار 2004