Regulation of Sexual Plasticity in a Nematode that Produces Males, Females, and Hermaphrodites
نویسندگان
چکیده
The mechanisms by which new modes of reproduction evolve remain important unsolved puzzles in evolutionary biology. Nematode worms are ideal for studying the evolution of mating systems because the phylum includes both a large range of reproductive modes and large numbers of evolutionarily independent switches [1, 2]. Rhabditis sp. SB347, a nematode with sexual polymorphism, produces males, females, and hermaphrodites [3]. To understand how the transition between mating systems occurs, we characterized the mechanisms that regulate female versus hermaphrodite fate in Rhabditis sp. SB347. Hermaphrodites develop through an obligatory nonfeeding juvenile stage, the dauer larva. Here we show that by suppressing dauer formation, Rhabditis sp. SB347 develops into females. Conversely, larvae that under optimal growth conditions develop into females can be respecified toward hermaphroditic development if submitted to dauer-inducing conditions. These results are of significance to understanding the evolution of complex mating systems present in parasitic nematodes.
منابع مشابه
PART OF A SPECIAL ISSUE ON PLANT MATING SYSTEMS Gender plasticity and sexual system stability in Wurmbea
†Background and aims Sexually dimorphic populations are often located in drier habitats than cosexual populations. Gender plasticity (GP), whereby hermaphrodites alter female and male functions depending on resources, and sex-differential plasticity (SDP) between hermaphrodites and unisexuals are predicted to affect sexual system stability. Here, GP and SDP are evaluated in cosexual and gynodio...
متن کاملGender plasticity and sexual system stability in Wurmbea.
BACKGROUND AND AIMS Sexually dimorphic populations are often located in drier habitats than cosexual populations. Gender plasticity (GP), whereby hermaphrodites alter female and male functions depending on resources, and sex-differential plasticity (SDP) between hermaphrodites and unisexuals are predicted to affect sexual system stability. Here, GP and SDP are evaluated in cosexual and gynodioe...
متن کاملEnvironmental factors affecting sexual differentiation in the entomopathogenic nematode Heterorhabditis bacteriophora.
The present study was aimed at determining the influence of various environmental factors on sex differentiation (SD) in the entomopathogenic nematode Heterorhabditis bacteriophora HP88 strain, under in vivo and in vitro culture conditions. Injection of individual nematodes into last instars of Galleria mellonella resulted in development of a similar number of females and hermaphrodites (35-40%...
متن کاملPhylogenetic patterns and phenotypic plasticity of molluscan sexual systems.
Molluscs show a wide diversity of sexual systems and strategies. There are both gastropod and bivalve families that are each primarily dioecious, simultaneous hermaphrodites, or sequential hermaphrodites, and other families in which almost every sexual strategy occurs. The multiple evolutionary transitions of sexual systems within molluscs would allow comparative analyses of the associated ecol...
متن کاملEvolution of male longevity bias in nematodes.
Many animal species exhibit sex differences in aging. In the nematode Caenorhabditis elegans, under conditions that minimize mortality, males are the longer-lived sex. In a survey of 12 independent C. elegans isolates, we find that this is a species-typical character. To test the hypothesis that the C. elegans male longevity bias evolved as a consequence of androdioecy (having males and hermaph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 21 شماره
صفحات -
تاریخ انتشار 2011