Physiology of the Sporulation Process in Clostridium Botulinum. I. Correlation of Morphological Changes with Catabolic Activities, Synthesis of Dipicolinic Acid, and Development of Heat Resistance.
نویسندگان
چکیده
Day, Lawrence E. (Michigan State University, East Lansing), and Ralph N. Costilow. Physiology of the sporulation process in Clostridium botulinum. I. Correlation of morphological changes with catabolic activities, synthesis of dipicolinic acid, and development of heat resistance. J. Bacteriol. 88:690-694. 1964.-A reasonable degree of synchrony in the sporulation of Clostridium botulinum 62-A was attained by using a large inoculum of a young culture into a medium containing 4% Trypticase and 1 ppm of thiamine. Sporulation was complete within 24 to 36 hr. Cells harvested at various intervals were studied for their fermentative activity with l-alanine and l-proline as substrates. The Q values (microliters of gas per hour per milligram of dry cells) were maximal at the time a large percentage of the cells had initiated sporulation as indicated by swelling. They declined to a plateau at about the same level as found in vegetative cells by the time 10% of the cells had completed sporulation, and finally to a much lower level when sporulation was completed. The rates of accumulation of volatile acids (acetic, valeric, and propionic acids) corresponded closely with the catabolic potential observed. However, in the case of acetic acid, there was a significant decrease in the total acid present as the number of mature spores increased to over 50% of the final number. The total acetic acid then increased at a slow rate. The production of basic compounds during growth and sporulation more than balanced the rate of acid production, because the hydrogen ion concentration decreased exponentially throughout the period as indicated by the steady increase in pH. The synthesis of dipicolinic acid coincided closely with the development of heat resistance. Refractility developed 3 to 5 hr in advance of heat resistance.
منابع مشابه
Genetic Characterization of the Exceptionally High Heat Resistance of the Non-toxic Surrogate Clostridium sporogenes PA 3679
Clostridium sporogenes PA 3679 is a non-toxic endospore former that is widely used as a surrogate for Clostridium botulinum by the food processing industry to validate thermal processing strategies. PA 3679 produces spores of exceptionally high heat resistance without botulinum neurotoxins, permitting the use of PA 3679 in inoculated pack studies while ensuring the safety of food processing fac...
متن کاملChanges in resistance to radiation and heat during sporulation and germination of Clostridium botulinum 33A.
During sporulation, Clostridium botulinum 33A developed resistance to ultraviolet and gamma rays about 2 hr prior to its development of heat resistance. During germination, loss of resistance to heat, ultraviolet radiation, and gamma radiation occurred essentially simultaneously.
متن کاملVariability in DPA and Calcium Content in the Spores of Clostridium Species
Spores of a number of clostridial species, and their resistance to thermal treatment is a major concern for the food industry. Spore resistance to wet heat is related to the level of spore hydration, which is inversely correlated with the content of calcium and dipicolinic acid (DPA) in the spore core. It is widely believed that the accumulation of DPA and calcium in the spore core is a fundame...
متن کاملGenome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics
The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the...
متن کاملCharacterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid.
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 88 شماره
صفحات -
تاریخ انتشار 1964