An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning

نویسندگان

  • N. H. C. Yung
  • Cang Ye
چکیده

In this paper, an alternative training approach to the EEM-based training method is presented and a fuzzy reactive navigation architecture is described. The new training method is 270 times faster in learning speed; and is only 4% of the learning cost of the EEM method. It also has very reliable convergence of learning; very high number of learned rules (98.8%); and high adaptability. Using the rule base learned from the new method, the proposed fuzzy reactive navigator fuses the obstacle avoidance behaviour and goal seeking behaviour to determine its control actions, where adaptability is achieved with the aid of an environment evaluator. A comparison of this navigator using the rule bases obtained from the new training method and the EEM method, shows that the new navigator guarantees a solution and its solution is more acceptable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Intelligent Navigator for Mobile Vehicles

AbstractThis paper presents an intelligent navigation method for navigation of a mobile vehicle in unknown environments. The proposed navigator consists of three modules: Obstacle Avoidor, Environment Evaluator and Navigation Supervisor. The Obstacle Avoidor is a fuzzy controller whose rule base is learnt through reinforcement learning. A new and powerful training method is proposed to constru...

متن کامل

Self-learning Fuzzy Navigation of Mobile Vehicle

This paper describes a self-learning navigation method which utilizes fuzzy logic and reinforcement learning for navigation of a mobile vehicle in uncertain environments. The proposed navigator consists of three modules: Obstacle Avoidance, Move to Goal and Fuzzy Behavior Supervisor. The fuzzy rules of the on-line obstacle avoidance are learnt through reinforcement learning. A new and powerful ...

متن کامل

An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic

This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...

متن کامل

Learning and adaptation of an intelligent mobile robot navigator operating in unstructured environment based on a novel online Fuzzy-Genetic system

In this paper we present our novel Fuzzy–Genetic techniques for the online learning and adaptation of an intelligent robotic navigator system. Such a system could be used by autonomous mobile vehicles navigating in unstructured and changing environments. In this work we focus on the online learning of the obstacle avoidance behaviour, which is an example of a behaviour that receives delayed rei...

متن کامل

ارائه الگوریتم جدید Fuzzy SARSA بهمنظور پیش بینی نوسانات سطح قند خون بیماران مبتلا به دیابت نوع یک

Background: One of the serious complications of type 1 diabetes is a sudden increase and drop in blood glucose levels causing risks of anesthesia and coma. Thus, an important step towards the optimal control of the disease is to use intelligent methods with low error rate and available information in order to predict and prevent such complications. In this paper, a combined Fuzzy SARSA algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 29 2  شماره 

صفحات  -

تاریخ انتشار 1999