Two-Stage Computational Cost Reduction Algorithm Based on Mahalanobis Distance Approximations
نویسندگان
چکیده
For many pattern recognition methods, high recognition accuracy is obtained at very high expense of computational cost. In this paper, a new algorithm that reduces the computational cost for calculating discriminant function is proposed. This algorithm consists of two stages which are feature vector division and dimensional reduction. The processing of feature division is based on characteristic of covariance matrix. The dimensional reduction in the second stage is done by an approximation of the Mahalanobis distance. Compared with the well-known dimensional reduction method of K-L expansion, experimental results show the proposed algorithm not only reduces the computational cost but also improves the recognition accuracy.
منابع مشابه
Applying the Mahalanobis-Taguchi System to Vehicle Ride
The Mahalanobis Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. The Mahalanobis Taguchi System is of interest because of its reported accuracy in forecasting small, correlated data sets. Th...
متن کاملThe Mahalanobis Distance Based Rival Penalized Competitive Learning Algorithm
The rival penalized competitive learning (RPCL) algorithm has been developed to make the clustering analysis on a set of sample data in which the number of clusters is unknown, and recent theoretical analysis shows that it can be constructed by minimizing a special kind of cost function on the sample data. In this paper, we use the Mahalanobis distance instead of the Euclidean distance in the c...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملTwo-stage Stochastic Programing Based on the Accelerated Benders Decomposition for Designing Power Network Design under Uncertainty
In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the net...
متن کاملIdentifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System
The Mahalanobis Taguchi System (MTS) is a diagnosis and forecasting method for multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. MTS is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000