Maximal Functions Associated to Filtrations

نویسنده

  • MICHAEL CHRIST
چکیده

Let T be a bounded linear, or sublinear, operator from L p (Y) to L q (X). To any sequence of subsets Y j of Y is associated a maximal operator T f(x) = sup j jT (f Yj)(x)j. Under the hypotheses that q > p and the sets Y j are nested, we prove that T is also bounded. Classical theorems of Menshov and Zygmund are obtained as corollaries. Multilinear generalizations of this theorem are also established. These results are motivated by applications to the spectral analysis of Schrr odinger operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filtrations in Semisimple Rings

In this paper, we describe the maximal bounded Z-filtrations of Artinian semisimple rings. These turn out to be the filtrations associated to finite Z-gradings. We also consider simple Artinian rings with involution, in characteristic 6= 2, and we determine those bounded Z-filtrations that are maximal subject to being stable under the action of the involution. Finally, we briefly discuss the an...

متن کامل

Filtrations in Semisimple Lie Algebras, I

In this paper, we study the maximal bounded Z-filtrations of a complex semisimple Lie algebra L. Specifically, we show that if L is simple of classical type An, Bn, Cn or Dn, then these filtrations correspond uniquely to a precise set of linear functionals on its root space. We obtain partial, but not definitive, results in this direction for the remaining exceptional algebras. Maximal bounded ...

متن کامل

Filtrations in Semisimple Lie Algebras, Ii

In this paper, we continue our study of the maximal bounded Z-filtrations of a complex semisimple Lie algebra L. Specifically, we discuss the functionals which give rise to such filtrations, and we show that they are related to certain semisimple subalgebras of L of full rank. In this way, we determine the “order” of these functionals and count them without the aid of computer computations. The...

متن کامل

Doob’s Maximal Identity, Multiplicative Decompositions and Enlargements of Filtrations

In the theory of progressive enlargements of filtrations, the supermartingale Zt = P (g > t | Ft) associated with an honest time g, and its additive (Doob-Meyer) decomposition, play an essential role. In this paper, we propose an alternative approach, using a multiplicative representation for the supermartingale Zt, based on Doob’s maximal identity. We thus give new examples of progressive enla...

متن کامل

On Poincaré Series of Filtrations on Equivariant Functions of Two Variables

Let a finite group G act on the complex plane (C, 0). We consider multi-index filtrations on the spaces of germs of holomorphic functions of two variables equivariant with respect to 1-dimensional representations of the group G defined by components of the exceptional divisor of a modification of the complex plane C at the origin or by branches of a G-invariant plane curve singularity (C, 0) ⊂ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007