The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes.
نویسندگان
چکیده
The insect gut is lined by a protective, chitinous peritrophic matrix (PM) that separates immunoreactive epithelial cells from microbes present within the luminal contents. Tsetse flies (Glossina spp.) imbibe vertebrate blood exclusively and can be exposed to foreign microorganisms during the feeding process. We used RNA interference-based reverse genetics to inhibit the production of a structurally robust PM and then observed how this procedure impacted infection outcomes after per os challenge with exogenous bacteria (Enterobacter sp. and Serratia marcescens strain Db11) and parasitic African trypanosomes. Enterobacter and Serratia proliferation was impeded in tsetse that lacked an intact PM because these flies expressed the antimicrobial peptide gene, attacin, earlier in the infection process than did their counterparts that housed a fully developed PM. After challenge with trypanosomes, attacin expression was latent in tsetse that lacked an intact PM, and these flies were thus highly susceptible to parasite infection. Our results suggest that immunodeficiency signaling pathway effectors, as opposed to reactive oxygen intermediates, serve as the first line of defense in tsetse's gut after the ingestion of exogenous microorganisms. Furthermore, tsetse's PM is not a physical impediment to infection establishment, but instead serves as a barrier that regulates the fly's ability to immunologically detect and respond to the presence of these microbes. Collectively, our findings indicate that effective insect antimicrobial responses depend largely upon the coordination of multiple host and microbe-specific developmental factors.
منابع مشابه
Trypanosome Infection Establishment in the Tsetse Fly Gut Is Influenced by Microbiome-Regulated Host Immune Barriers
Tsetse flies (Glossina spp.) vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of c...
متن کاملPGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis
Peptidoglycan recognition proteins (PGRPs) and commensal microbes mediate pathogen infection outcomes in insect disease vectors. Although PGRP-LD is retained in multiple vectors, its role in host defense remains elusive. Here we report that Anopheles stephensi PGRP-LD protects the vector from malaria parasite infection by regulating gut homeostasis. Specifically, knock down of PGRP-LD (dsLD) in...
متن کاملAn insect symbiosis is influenced by bacterium-specific polymorphisms in outer-membrane protein A.
Beneficial bacterial symbioses are ubiquitous in nature. However, the functional and molecular basis of host tolerance to resident symbiotic microbes, in contrast to resistance to closely related bacteria that are recognized as foreign, remain largely unknown. We used the tsetse fly (Glossina morsitans), which depends on symbiotic flora for fecundity and has limited exposure to foreign microbes...
متن کاملPopulation Vulnerability and Disability in Kenya's Tsetse Fly Habitats
BACKGROUND Human African Trypanosomiasis (HAT), also referred to as sleeping sickness, and African Animal Trypanosomaisis (AAT), known as nagana, are highly prevalent parasitic vector-borne diseases in sub-Saharan Africa. Humans acquire trypanosomiasis following the bite of a tsetse fly infected with the protozoa Trypanosoma brucei (T.b.) spp. -i.e., T.b. gambiense in West and Central Africa an...
متن کاملAn Investigation into the Protein Composition of the Teneral Glossina morsitans morsitans Peritrophic Matrix
BACKGROUND Tsetse flies serve as biological vectors for several species of African trypanosomes. In order to survive, proliferate and establish a midgut infection, trypanosomes must cross the tsetse fly peritrophic matrix (PM), which is an acellular gut lining surrounding the blood meal. Crossing of this multi-layered structure occurs at least twice during parasite migration and development, bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 193 2 شماره
صفحات -
تاریخ انتشار 2014