Probabilistic ( Quasi ) metric Versions for a Stability Result of Baker Dorel

نویسنده

  • Claudia Zaharia
چکیده

and Applied Analysis 3 Definition 2.3 see 16 . Let X,F, T be a probabilistic metric space. A mapping f : X → X is said to be a Sehgal contraction or B-contraction if the following relation holds: Ff p f q kt ≥ Fpq t , ( p, q ∈ X, t > 0. 2.1 Theorem 2.4 see 17 . Let X,F, T be a complete probabilistic metric space with T of Hadžić-type and f : X → X be a B-contraction. Then f has a fixed point if and only if there is p ∈ X such that Fpf p ∈ D . If Fpf p ∈ D , then p∗ : limn→∞f p is the unique fixed point of f in the set Y {q ∈ X : Fpq ∈ D }. The following lemma completes Theorem 2.4 with an estimation relation, in the case T TM. Lemma 2.5 see 18 . Let X,F, TM be a complete probabilistic metric space and f : X → X be a k − B contraction. Suppose that Fpf p ∈ D and let p∗ limn→∞f p . Then Fpp∗ t 0 ≥ Fpf p 1 − k t , ∀t > 0. 2.2 This lemma can be extended to the case of probabilistic metric spaces under a continuous t-norm of H-type. Lemma 2.6. Let X,F, T be a complete probabilistic metric space, with T a continuous t-norm of H-type and bn n be a strictly increasing sequence of idempotents of T . Suppose f : X → X is a B-contraction with Lipschitz constant k ∈ 0, 1 . If there exists p ∈ X such that Fpf p ∈ D , then p∗ limn→∞ f p is the unique fixed point of f in the set { q ∈ X : Fpq ∈ D } . 2.3 Moreover, if t > 0 is so that Fpf p 1 − k t ≥ bn, then Fpp∗ t 0 ≥ bn. Proof. We have to prove only the last part of the theorem. We show by induction on m that Fpf p 1 − k s ≥ bn implies Fpfm p s ≥ bn, for all m ≥ 1. The case m 1 is obvious. Now, suppose that Fpfm p s ≥ bn. Then Fpfm 1 p s ≥ T ( Fpf p 1 − k s , Ff p fm 1 p ks ) ≥ TFpf p 1 − k s , Fpfm p s )

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY QUASI-METRIC VERSIONS OF A THEOREM OF GREGORI AND SAPENA

We provide fuzzy quasi-metric versions of a fixed point theorem ofGregori and Sapena for fuzzy contractive mappings in G-complete fuzzy metricspaces and apply the results to obtain fixed points for contractive mappingsin the domain of words.

متن کامل

The Probabilistic Stability for a Functional Nonlinear Equation in a Single Variable

We use the fixed point method to prove the probabilistic Hyers–Ulam and generalized Hyers–Ulam–Rassias stability for the nonlinear equation f (x) = Φ(x, f (η(x))) where the unknown is a mapping f from a nonempty set S to a probabilistic metric space (X ,F,TM) and Φ : S×X → X , η : S → X are two given functions. Mathematics subject classification (2000): 39B52, 39B82, 47H10, 54E70.

متن کامل

A RESULT ON FIXED POINTS FOR WEAKLY QUASI-CONTRACTION MAPS IN METRIC SPACES

In this paper, we give a new fixed point theorem forWeakly quasi-contraction maps in metric spaces. Our results extend and improve some fixed point and theorems in literature.    

متن کامل

Relationships between completeness of fuzzy quasi-uniform spaces

In this paper, we give a kind of Cauchy 1-completeness in probabilistic quasi-uniform spaces by using 1-filters. Utilizingthe relationships among probabilistic quasi-uniformities, classical quasi-uniformities and Hutton [0, 1]-quasi-uniformities,we show the relationships between their completeness. In fuzzy quasi-metric spaces, we establish the relationshipsbetween the completeness of induced p...

متن کامل

Coupled common fixed point theorems for $varphi$-contractions in probabilistic metric spaces and applications

In this paper, we give some new coupled common  fixed point theorems for probabilistic $varphi$-contractions  in Menger probabilistic metric spaces.  As applications of the main results, we obtain some coupled common fixed point theorems in usual metric spaces and fuzzy metric spaces. The main results of this paper improvethe corresponding results given by some authors. Finally, we give one exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014