Experimental study of entrainment and drainage flows in microscale soap films.
نویسندگان
چکیده
The thickness of freely suspended surfactant films during vertical withdrawal and drainage is investigated using laser reflectivity. The withdrawal process conducted at capillary numbers below 10(-3) generates initial film thicknesses in the micrometer range; subsequent thinning is predominantly impelled by capillary and not gravitational forces. Under these conditions, our results show that film thinning above and below the critical micelle concentration (cmc) is well approximated by a power law function in time whose exponents, which range from -0.9 to -1.8, are inconsistent with current descriptions of capillary-viscous drainage in inextensible films which predict exponents close to -0.5. Correlations between the experimental fitting parameters illustrate important differences in film behavior across the cmc. In addition, normalization of the drainage data yields a collapse to a single functional form over 3 decades in time for a wide range of initial withdrawal rates. We demonstrate that modification of the interface boundary condition in current models to account for Marangoni stresses through an effective slip parameter yields values of the exponents and other key parameters in excellent agreement with experiment. This modification also successfully describes the withdrawal thickness below the cmc.
منابع مشابه
Flotation De-inking of 50% Onp/ 50% Omg Recovered Papers Mixtures Using Nonionic Surfactant, Soap, and Surfactant/soap Blends
A laboratory flotation column equipped with Venturi aerators and an adjustable froth removal system was used to study the effect of calcium soap and a mixture of calcium soap/alkyl phenol ethoxylate surfactant on ink and fibres transfer during flotation de-inking of a 50% old newprint (ONP) / 50% old magazines (OMG) recovered papers mixture. Mass transport phenomena determining the yield of the...
متن کاملOverview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملHydrodynamic Performances of Air-Water Flows in Gullies with and without Swirl Generation Vanes for Drainage Systems of Buildings
As an attempt to improve the performances of multi-entry gullies with applications to drainage system of a building, the hydrodynamic characteristics of air-water flows through the gullies with and without swirl generation vanes (SGV) are experimentally and numerically examined. With the aid of present Charge Coupled Device (CCD) image and optical systems for experimental study, the mechanism o...
متن کاملDynamic Processes in Soap Films
Some relations between the two main types of thin liquid films, the water-in-air "soap" films and the invert oil-in-water "lipid" films, are outlined, and several dynamic aspects of film behavior are illustrated and briefly reviewed with reference to more complete treatments. These dynamic processes are important in both types of films, but are easier to study in soap films. The topics include ...
متن کاملExperimental Analysis on the Water Entrainment of Turbidity Current over a Mobile Bed
Study of Turbidity Current, as one of the most important phenomena affecting the sedimentation in the reservoirs of dams, is essential. Since most of the research studies have been conducted under experimental conditions on rigid beds, the effect of erodible bed and the formation of the bed form on the turbidity current specifications is not yet clear. Therefore, in this Research, the study of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2005