Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization- and insulin-like growth factor I-mediated survival of cerebellar granule cells.
نویسندگان
چکیده
Depolarizing concentrations of potassium promote the survival of many neuronal cell types including cerebellar granule cells. To begin to understand the intracellular mediators of neuronal survival, we have tested whether the survival-promoting effect of potassium depolarization on cerebellar granule cells is dependent on either mitogen-activated protein (MAP) kinase or phosphatidylinositol 3-kinase (PI-3-K) activity. In 7-day cerebellar granule cell cultures, potassium depolarization activated both MAP kinase and PI-3-K. Preventing the activation of MAP kinase with the MEK1 inhibitor PD98059 did not affect potassium saving. In contrast, the survival-promoting effect of 25 mM potassium was negated by the addition of 30 microM LY 294002 or 1 microM wortmannin, two distinct inhibitors of PI-3-K. The cell death induced by PI-3-K inhibition was indistinguishable from the cell death caused by potassium deprivation; LY 294002-induced death included nuclear condensation, was blocked by cycloheximide, and had the same time course as potassium deprivation-induced cell death. Cerebellar granule cells can also be maintained in serum-free medium containing either 100 ng/ml insulin-like growth factor I (IGF-I) or 800 microM cAMP. PI-3-K inhibition completely blocked the survival-promoting activity of IGF-I, but had no effect on cAMP-mediated survival. These data indicate that the survival-promoting effects of depolarization and IGF-I, but not cAMP, require PI-3-K activity.
منابع مشابه
Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling.
Cultured cerebellar granule neurons die by apoptosis when switched from a medium containing an elevated level of potassium (K+) to one with lower K+ (5 mM). Death resulting from the lowering of K+ can be prevented by insulin-like growth factor (IGF-1). To understand how IGF-1 inhibits apoptosis and maintains neuronal survival, we examined the role of phosphoinositide 3-kinase (PI 3-kinase). Act...
متن کاملInsulin-like growth factor-I and Bcl-X(L) inhibit c-jun N-terminal kinase activation and rescue Schwann cells from apoptosis.
We previously reported that Schwann cells undergo apoptosis after serum withdrawal. Insulin-like growth factor-I, via phosphatidylinositol-3 kinase, inhibits caspase activation and rescues Schwann cells from serum withdrawal-induced apoptosis. In this study, we examined the role of c-jun N-terminal protein kinase (JNK) in Schwann cell apoptosis induced by serum withdrawal. Activation of both JN...
متن کاملOligodendrocytes and their precursors require phosphatidylinositol 3-kinase signaling for survival.
Signal transduction in response to several growth factors that regulate oligodendrocyte development and survival involves the activation of phosphatidylinositol 3-kinase, which we detect in oligodendrocytes and their precursors. To investigate the role of this enzyme activity, we analyzed cell survival in cultures of oligodendrocytes treated with wortmannin or LY294002, two potent inhibitors of...
متن کاملEssential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells.
Caveolae, specialized flask-shaped lipid rafts on the cell surface, are composed of cholesterol, sphingolipids, and structural proteins termed caveolins; functionally, these plasma membrane microdomains have been implicated in signal transduction and transmembrane transport. In the present study, we examined the role of caveolin-1 in multiple myeloma cells. We show for the first time that caveo...
متن کاملInsulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons.
Cerebellar granule neurons depend on insulin-like growth factor-I (IGF-I) for their survival. However, the mechanism underlying the neuroprotective effects of IGF-I is presently unclear. Here we show that IGF-I protects granule neurons by suppressing key elements of the intrinsic (mitochondrial) death pathway. IGF-I blocked activation of the executioner caspase-3 and the intrinsic initiator cas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 272 15 شماره
صفحات -
تاریخ انتشار 1997