A Modular Design for the Clathrin- and Actin-Mediated Endocytosis Machinery

نویسندگان

  • Marko Kaksonen
  • Christopher P. Toret
  • David G. Drubin
چکیده

Endocytosis depends on an extensive network of interacting proteins that execute a series of distinct subprocesses. Previously, we used live-cell imaging of six budding-yeast proteins to define a pathway for association of receptors, adaptors, and actin during endocytic internalization. Here, we analyzed the effects of 61 deletion mutants on the dynamics of this pathway, revealing functions for 15 proteins, and we analyzed the dynamics of 8 of these proteins. Our studies provide evidence for four protein modules that cooperate to drive coat formation, membrane invagination, actin-meshwork assembly, and vesicle scission during clathrin/actin-mediated endocytosis. We found that clathrin facilitates the initiation of endocytic-site assembly but is not needed for membrane invagination or vesicle formation. Finally, we present evidence that the actin-meshwork assembly that drives membrane invagination is nucleated proximally to the plasma membrane, opposite to the orientation observed for previously studied actin-assembly-driven motility processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flat clathrin lattices are dynamic actin-controlled hubs for clathrin-mediated endocytosis and signalling of specific receptors

Clathrin lattices at the plasma membrane coat both invaginated and flat regions forming clathrin-coated pits and clathrin plaques, respectively. The function and regulation of clathrin-coated pits in endocytosis are well understood but clathrin plaques remain enigmatic nanodomains. Here we use super-resolution microscopy, molecular genetics and cell biology to show that clathrin plaques contain...

متن کامل

Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis.

The actin cytoskeleton is believed to contribute to the formation of clathrin-coated pits, although the specific components that connect actin filaments with the endocytic machinery are unclear. Cortactin is an F-actin-associated protein, localizes within membrane ruffles in cultured cells, and is a direct binding partner of the large GTPase dynamin. This direct interaction with a component of ...

متن کامل

The Initiation of Clathrin-Mediated Endocytosis Is Mechanistically Highly Flexible

Clathrin-mediated endocytosis is driven by a complex machinery of proteins, which assemble in a regular order at the plasma membrane. The assembly of the endocytic machinery is conventionally thought to be a continuous process of mechanistically dependent steps, starting from a defined initiation step. Indeed, several initiation mechanisms involving single proteins have been proposed in mammali...

متن کامل

The role of F-actin in modulating Clathrin-mediated endocytosis: Lessons from neurons in health and neuropsychiatric disorder

Clathrin-mediated endocytosis is one of several mechanisms for retrieving transmembrane proteins from the cell surface. This key mechanism is highly conserved in evolution and is found in any eukaryotic cell from yeast to mammals. Studies from several model organisms have revealed that filamentous actin (F-actin) plays multiple distinct roles in shaping Clathrin-mediated endocytosis. Yet, despi...

متن کامل

A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis

Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2005